首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张鹏  王静  段香梅 《中国物理 B》2016,25(3):37302-037302
We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure.  相似文献   

2.
胡永金  吴云沛  刘国营  罗时军  何开华 《物理学报》2015,64(22):227802-227802
运用密度泛函理论体系下的投影缀加波方法, 对闪锌矿和朱砂相结构的ZnTe在高压下的状态方程和结构相变进行了研究, 并分析了相变前后的原胞体积、电子结构和光学性质. 结果表明: 闪锌矿结构转变为朱砂相结构的相变压力为8.6 GPa, 并没有出现类似材料高压导致的金属化现象, 而是表现出间接带隙半导体特性. 相变后, 朱砂相结构Zn和Te原子态密度分布均向低能级方向移动, 带隙变小; 轨道杂化增强, 更有利于Te 5p与Zn 3d间的电子跃迁, 介电常数虚部主峰明显增强, 但宏观介电常数不受压力的影响.  相似文献   

3.
4.
We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of ?0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.  相似文献   

5.
The development of efficient metal‐free electrocatalysts for oxygen electrocatalysis is of great significance for various energy conversion devices. Herein, novel nitrogen‐doped holey graphene nanocapsules (NHGNs) are reported prepared by self‐assembly of graphene oxide nanosheets on the surface of amino‐functionalized silica template and NH3 activation with simultaneously enhanced nitrogen doping and etching of nanopores in graphene, followed by template etching. The silica template is demonstrated to show a substrate‐enhanced effect on nitrogen doping and etching of nanopores in graphene based on density functional theory calculations. Benefiting from the large surface area, unique pore distribution, and high surface functionality of nitrogen doping, the resulting NHGNs exhibit superior bifunctional electrocatalytic activity and durability for both oxygen reduction reaction and oxygen evolution reaction, which is similar to that of the commercial Pt/C and RuO2 electrocatalysts, respectively. This work presents an advance in developing new nitrogen‐doped graphene species for highly efficient metal‐free electrocatalysis.  相似文献   

6.
M. Lindenblatt 《Surface science》2006,600(18):3624-3628
Time-dependent density functional theory for the electronic degrees of freedom has been combined with Ehrenfest dynamics for the nuclei to simulate electron-hole pair excitation due to electronic friction during the chemisorption of hydrogen atoms on an Al(1 1 1) surface. The H-atoms are assumed to be spin-unpolarized in the simulations. Trajectories starting with a hydrogen atom at rest above either the on-top or the fcc-hollow site evolve in qualitatively very different ways: at the fcc-hollow position the H-atom acquires sufficient kinetic energy in the chemisorption well to penetrate into the Al-substrate, thereby increasing the coupling of the motion of the H-atom to the substrate electrons. The electronic excitation spectra, however, are roughly characterized by an exponential decay with similar fictitious temperature parameters of the order of 103 K for both kinds of trajectories. The energy dissipation into electron-hole pairs and the nonadiabatic contribution to the force acting on the hydrogen atom have been calculated along the trajectories.  相似文献   

7.
8.
9.
The physics of high resolution transmission electron microscopy (HRTEM) image formation and electron diffraction of single wall carbon nanotubes (SWCNTs) in a polymer matrix was investigated theoretically on the basis of the multislice method. The effect of the nanocomposite thickness on both image contrast and typical electron diffraction reflections of the nanofillers was explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
The structural, elastic, phonon and electronic properties of a MnPd alloy have been investigated using the first-principles calculation. The calculated lattice constants and electronic structure agree well with the experimental results. The microscopic mechanism of the diffusionless martensitic transition from the paramagnetic B2 (PM-B2) phase to the antiferromagnetic L10 (AFM-L10) phase through the intermediate paramagnetic L10 (PM-L10 ) phase has been explored theoretically. The obtained negative shear modulus C′= (C11-C12)/2 of the PM-B2 phase is closely related to the instability of the cubic B2 phase with respect to the tetragonal distortions. The calculated phonon dispersions for the PM-L10 and AFM-L10 phases indicate that they are dynamically stable. However, the AFM-L10 phase is energetically most favorable according to the calculated total energy order, so the PM-L10 →AFM-L10 transition is caused by the magnetism rather than the electron-phonon interaction. Additionally, the AFM-L10 state is stabilized through the formation of a pseudo gap located at the Fermi level. The calculated results show that the CuAu-I type structure in the collinear antiferromagnetic state is dynamically and mechanically stable, thus is the low temperature phase.  相似文献   

12.
王俊斐  陈文周  姜振益  张小东  司良 《中国物理 B》2012,21(7):77102-077102
The structural, elastic, phonon, and electronic properties of MnPd alloy have been investigated by using the first-principles calculations. The calculated lattice constants and electronic structure are in good agreement with the experimental results. The microscopic mechanism of the diffusionless martensitic transition from the paramagnetic B2 (PM-B2) phase to the antiferromagnetic L10 (AFM-L10) phase through the intermediate paramagnetic L10 (PM-L10) phase has been explored theoretically. The obtained negative shear modulus C′= (C11-C12)/2 of the PM-B2 phase is closely related to the instability of the cubic B2 phase with respect to the tetragonal distortions. The calculated phonon dispersions for PM-L10 and AFM-L10 phases indicate that they are dynamically stable. However, the AFM-L10 phase is energetically most favorable according to the calculated total energy order, so the PM-L10 !AFM-L10 transition is caused by the magnetism rather than the electron–phonon interaction. Additionally, the AFM-L10 state is stabilized through the formation of a pseudo gap located at the Fermi level. The calculated results show that the CuAu-I type structure in the collinear antiferromagnetic state is dynamically and mechanical stable, thus is the low temperature phase.  相似文献   

13.
This study reports a facial regio‐selective synthesis of 2‐alkyl‐N‐ethanoyl indoles from substituted‐N‐ethanoyl anilines employing palladium (II) chloride, which acts as a cyclization catalyst. The mechanistic trait of palladium‐based cyclization is also explored by employing density functional theory. In a two‐step mechanism, the palladium, which attaches to the ethylene carbons, promotes the proton transfer and cyclization. The gas‐phase barrier height of the first transition state is 37 kcal/mol, indicating the rate‐determining step of this reaction. Incorporating acetonitrile through the solvation model on density solvation model reduces the barrier height to 31 kcal/mol. In the presence of solvent, the electron‐releasing (–CH3) group has a greater influence on the reduction of the barrier height compared with the electron‐withdrawing group (–Cl). These results further confirm that solvent plays an important role on palladium‐catalyzed proton transfer and cyclization. For unveiling structural, spectroscopic, and photophysical properties, experimental and computational studies are also performed. Thermodynamic analysis discloses that these reactions are exothermic. The highest occupied molecular orbital?lowest unoccupied molecular orbital gap (4.9–5.0 eV) confirms that these compounds are more chemically reactive than indole. The calculated UV–Vis spectra by time‐dependent density functional theory exhibit strong peaks at 290, 246, and 232 nm, in good agreement with the experimental results. Moreover, experimental and computed 1H and 13C NMR chemical shifts of the indole derivatives are well correlated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The resonance Raman spectroscopy in conjunction with the density functional theory calculations were used to study the excited state structural dynamics of 2‐mercapto‐1‐methylimidazole (MMI). The experimental UV absorption bands were assigned according to the time‐dependent density functional calculations. The vibrational assignments were done for the A‐band resonance Raman spectra of MMI in water and acetonitrile on the basis of the Fourier transform infrared (FT‐IR) and FT‐Raman measurements in solid, in water and in acetonitrile and the corresponding B3LYP/6‐311+G(d, p) computations. The dynamic structures of MMI were obtained by analysis of the resonance Raman intensity pattern and normal mode analysis. The differences in the dynamic structures of MMI and thiourea were revealed and explained. The structural dynamic of MMI was found to be similar to that of 2‐thiopyrimidone in terms of major reaction coordinates and thus favored the intra‐molecular proton transfer reaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Correct net charge and protonation pattern in the polyamine backbone is one of the major factors that define the interactions of this class of compounds. 1,12‐diamino‐3,6,9‐triazadodecane (SpmTrien) is a isosteric charge deficient analogue of naturally occurring spermine (Spm) with different biological features. The tautomeric populations of each SpmTrien charge state were estimated with computer simulations, molecular dynamics (MD) and quantum mechanical calculations, and cluster expansions separately. In the computer simulations, tautomeric populations of each charge state were obtained by constrained least‐squares fitting the theoretically calculated (GIAO B3LYP/6‐311 + G**) 15 N NMR chemical shieldings of SpmTrien tautomers to the experimentally measured chemical shifts. Theoretical chemical shieldings were calculated for water complexes of SpmTrien obtained from MD simulations in explicit water. Both methods gave highly similar realistic results. SpmTrien has many major populations of tautomers at biologically relevant charge states of three (+3) and four (+4) thus enabling a large variety of structures for specific ionic interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The conformational equilibria of cyclohexane (as well as its fluoro‐, chloro‐, methyl‐, hydroxy‐, and t‐butyl derivatives), cyclohexanone, piperidine, tetrahydropyran (and its 2‐hydroxy derivative) were studied by ab initio and DFT procedures. The transition states were calculated at HF/6‐31G, B3LYP/6‐31+G*, and B3LYP/6‐311+G** levels, whereas the intrinsic reaction coordinates (IRCs) were evaluated at the B3LYP/6‐31+G* level. The degree of puckering and energy data was nearly not basis set‐dependent (using B3LYP) in most of the cases. However, DFT methods gave better agreement with experimental data than HF methods, as expected from electron correlation inclusion. Fluorocyclohexane and 2‐hydroxytetrahydropyran showed the largest basis set‐energy dependence. It was found that the conversion from chair to skew is direct in some cases, whereas in others it goes through the pseudorotational (skew/boat) pathway. The case of t‐butylcyclohexane, with a skew form as stable as one of the chairs, is especially interesting. In this compound, as well as in cyclohexanone and 2‐hydroxytetrahydropyran, large deviations from the known pseudorotation/inversion scheme are observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A fundamental reduction reaction, nitrobenzene to aniline in SnCl2 and hydrochloric acid, was investigated by density functional theory (DFT) calculations. First, the change of SnCl2 → SnCl42? → Cl4SnH? was discussed, and the reaction path of SnCl42? + H3O+ → Cl4SnH? + H2O was obtained. Starting from nitrobenzene, six elementary processes were found so as to arrive at the protonated aniline. The hydride ion from Cl4SnH? is connected always to the cationic nitrogen, and the proton is always to oxygens. An intermediate Ph?N+H2OH was obtained, which is isomerized to the para O?H adduct protonated imine via the Bamberger rearrangement. This species may undergo the H? acceptance at the sp2 N+H2 center. In the nitrobenzene reduction, the proton enhances the electrophilicity of the nitrogen center, which makes the hydride shift ready. N?H bonds are formed, and N?O bonds are cleaved both by the proton attach and subsequent H2O elimination and by the formal [1,5] OH shift. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We present the first vibrational structure investigation of 3,3,7,7‐tetrakis(difluoramino)octahydro‐1,5‐dinitro‐ 1,5‐diazocine (HNFX)—and, more generally, of a member of the new class of gem‐bis(difluoramino)‐substituted heterocyclic nitramine energetic materials—using combined theoretical and experimental approaches. Optimized molecular structure and vibrational spectra of the Ci… symmetry conformer constituting the HNFX crystal were computed using density functional theory methods. Fourier transform infrared and Raman spectra of HNFX crystalline samples were also collected at ambient temperature and pressure. The average deviation of calculated structural parameters from X‐ray diffraction data is ∼1% at the B3LYP/6‐311 + + G(d,p) level of theory, suggesting the absence of significant molecular distortion induced by the crystal field. Very good agreement was found between simulated and measured spectra, allowing reliable assignment of the fundamental normal modes of vibration of the HNFX crystal. Detailed analysis of the normal modes of the C–(NF2)2 and N–NO2 moieties was performed due to their critical importance in the initial steps of the molecular homolytic fragmentation process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In bilayer graphene, mutual rotation of layers has strong effect on the electronic structure. We theoretically study the distribution of electron density in twisted bilayer graphene with the rotation angle of 21.8° and find that regions with AA‐like and AB‐like stacking patterns separately contribute to the interlayer low‐energy van Hove singularities. In order to investigate the peculiarities of interlayer coupling, the charge density map between the layers is examined. The presented results reveal localization of π‐electrons between carbon atoms belonging to different graphene layers when they have AA‐like stacking environment, while the interlayer coupling is stronger within AB‐stacked regions.

Charge density map for bilayer graphene with a layer twist of 21.8° (interlayer region).  相似文献   


20.
A new wave packet molecular dynamics–density functional theory (WPMD‐DFT) method is proposed for atomistic simulations of non‐ideal plasma and warm dense matter. The method is based on the WPMD approach, where the electronic exchange and correlation effects are treated using an additional energy term taken from DFT. This term is calculated by integration over the mesh values of the wave packet density. The local density approximation is implemented so far. WPMD‐DFT is meant as a replacement for the anti‐symmetrized WPMD (AWPMD) method which is more time consuming and lacks electron correlation. In this paper, we compare the results obtained by WPMD‐DFT, WPMD, AWPMD, classical molecular dynamics, and path integral Monte Carlo methods for the internal energy of the hydrogen plasma in the temperature range 10–50 kK and electron number density from 1020 to 1024 cm?3. We also demonstrate the ability to handle the simultaneous dynamics of electrons and ions by calculating the electron–ion temperature relaxation. The scalability of the WPMD‐DFT method with the number of electrons is shown for implementations in central processing unit and graphical processing unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号