首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The straightforward synthesis of polystyrene‐supported Chinchona alkaloids and their application in the asymmetric dimerization of ketenes is reported. Six different immobilized derivatives, consisting of three dimeric and two monomeric 9‐O ethers, were prepared by “click” anchoring of soluble alkaloid precursors on to azidomethyl resins. The resulting insoluble polymer‐bound (IPB) organocatalysts were employed for promoting the dimerization of in‐situ generated ketenes. After opening of the ketene dimer intermediates with N,O‐dimethylhydroxylamine, valuable Weinreb amides were eventually obtained in good yield (up to 81 %) and excellent enantiomeric purity (up to 96 % ee). All of the IPB catalysts could be recycled effectively without significant loss of activity and enantioselectivity. The extension to other asymmetric transformations (meso‐anhydride desymmetrization and α‐amination of 2‐oxindoles) is also briefly discussed.  相似文献   

2.
The selective construction of carbon-fluorine bonds is of great interest to medicinal chemists because the replacement of a hydrogen or an oxygen atom with a fluorine atom in biologically active molecules can confer the molecules with improved physicochemical properties and biological activities. Since the first discovery of enantioselective fluorination using N-fluorocamphorsultam, our synthetic interest had been focused on the development of chiral N-fluorosulfonamide derivatives capable of enantioselective fluorination. However, these initial efforts revealed several limitations in both chemical yields and enantioselectivities of the fluorinated products. We present here the background of our personal story of the enantioselective fluorination reaction and some successful applications of the methods to the design and synthesis of biologically active products. Two novel approaches using cinchona alkaloid/Selectfluor® combinations and chiral ligands/metal complexes have been pursued, respectively. In addition, the recent advances in this area by other groups are also described briefly.  相似文献   

3.
The guanidine organocatalyst, ChibaG, was bound via an ether linkage to the phenyl group of the 2‐imino substituent to Merrifield resin. Polystyrene‐bound ChibaG acted as an effective catalyst in the Michael reaction of tert‐butyl N‐(diphenylmethylidene)glycinate with methyl vinyl ketone, and could be recovered and reused many times.  相似文献   

4.
The first arylation strategy for the synthesis of enantioenriched propargylamines is disclosed. This approach, which is complementary to previous alkynylation and alkylation strategies, involves a C(sp2)?C(sp3) bond formation, and is based on the first asymmetric Friedel–Crafts‐type arylation reaction of C‐alkynyl imines. Asymmetric Friedel–Crafts reactions with electron‐deficient phenols, a longstanding unsolved challenge, have thus been realized for the first time, enabled by the combination of our recently introduced C‐alkynyl N‐Boc‐protected N,O‐acetals as electrophiles and chiral phosphoric acids as catalysts. The synthetic utility of the resulting structurally diverse and polyfunctional chiral propargylamines was demonstrated by a series of selective transformations, including controlled reduction of the alkynyl group and iterative cross‐couplings.  相似文献   

5.
Asymmetric hetero‐Diels‐Alder (AHDA) reactions provide a multitude of opportunities for the highly efficient, regio‐ and stereoselective construction of various heterocycles in enantiomerically pure form. The asymmetric aza‐Diels‐Alder (A‐aza‐DA) reaction using diversely hetero‐dienophiles and hetero‐dienes have been increasingly developed as a valuable method for the synthesis of functionalized nitrogen ring systems. The purpose of this review is to give a detailed discussion of the A‐aza‐DA reaction particularly, the stereoselective reactions of imines as dienophiles with Dainshefsky dienes to obtain optically pure aza‐Diels‐Alder products. The development of stereoselective variants of the reaction make use of imines as the dienophile and Dainshefsky dienes is at the forefront of these studies. This review updates the A‐aza‐DA reactions covering the literature from 1972 till date  相似文献   

6.
In this work, six isosteviol? amino acid conjugates were designed and synthesized through simple condensation on a large scale without protecting group (Scheme). These amphiphilic organocatalysts mediated asymmetric three‐component Mannich reactions of cyclohexanone and anilines with aromatic aldehydes in the presence of H2O. Meanwhile, the isosteviol? proline conjugate 3b has been established as a highly efficient catalyst (Table 1), and afforded syn‐Mannich products with excellent diastereoselectivities (syn/anti up to 98 : 2) and enantioselectivities (up to >99% ee; Table 3). The transition state of the reaction in the presence of H2O is proposed (Fig. 2).  相似文献   

7.
Friedel–Crafts benzylations between unactivated arenes and benzyl alcohol derivatives are clean and straightforward processes to construct biologically useful di‐ and tri‐arylmethanes. We have established an efficient iron‐catalyzed Friedel–Crafts benzylation method at room temperature that uses benzyl TMS ethers as substrates, which are poorly reactive under common nucleophilic substitution conditions. The reaction seems to progress through iron‐catalyzed self‐condensation of the benzyl TMS ether to the corresponding dibenzylic ether. The use of excess arene relative to benzyl TMS ether produced mono‐benzylated arene (di‐ and tri‐arylmethane products), whereas the use of excess benzyl TMS ether versus arene provided bis‐benzylated arene (polyarylated products) in high yields and regioselectivities. In previous methods, the latter double Friedel–Crafts benzylations hardly proceed.  相似文献   

8.
The Friedel–Crafts reaction of electron‐rich phenols with isatins was developed by employing bifunctional thiourea–tertiary amine organocatalysts. Cinchona alkaloid derived thiourea epiCDT‐ 3 a efficiently catalyzed the Friedel–Crafts‐type addition of phenols to isatin derivatives to provide 3‐aryl‐3‐hydroxy‐2‐oxindoles 7 and 9 in good yield (80–95 %) with good enantiomeric excess (83–94 %). Friedel–Crafts adduct 7 t was subjected to a copper(I)‐catalyzed azide–alkyne cycloaddition to obtain biologically important 3‐aryl‐3‐hydroxy‐2‐oxindole 11 in good enantiomeric excess and having a 1,2,3‐triazole moiety.  相似文献   

9.
The very recent advances in chiral phosphoric acids (CPAs) catalyzed asymmetric reactions are discussed.  相似文献   

10.
Metal‐catalyzed asymmetric allylic substitution (AAS) reaction is one of the most synthetically useful reactions catalyzed by metal complexes for the formation of carbon‐carbon and carbon‐heteroatom bonds. It comprises the substitution of allylic substrates with a wide range of nucleophiles or SN2′‐type allylic substitution, which results in the formation of the above‐mentioned bonds with high levels of enantioselective induction. AAS reaction tolerates a broad range of functional groups, thus has been successfully applied in the asymmetric synthesis of a wide range of optically pure compounds. This reaction has been extensively used in the total synthesis of several complex molecules, especially natural products. In this review, we try to highlight the applications of metal (Pd, Ir, Mo, or Cu)‐catalyzed AAS reaction in the total synthesis of the biologically active natural products, as a key step, updating the subject from 2003 till date.  相似文献   

11.
Barbier allylation and Friedel-Crafts alkylation of (un)substituted benzaldehydes, allylbromide and phenols can be combined in a one-pot process in ionic liquid (BuPyC1/SnC12·2H2O) to directly synthesize 4-(2-hydroxyphenyl)- 4-[(un)substituted phenyl]but-1-ene compounds, which were applied to the synthesis of 4-(substituted phenyl)- chromans through intramolecular cyclization reactions.  相似文献   

12.
Slowly does it! By adding the substrate by a syringe pump, a highly efficient Friedel–Crafts reaction of 4,7‐dihydroindoles with nitroolefins was realized with 0.5 mol % of a chiral phosphoric acid. The Friedel–Crafts alkylation, together with a subsequent oxidation of the product, led to 2‐substituted indoles in excellent enantiomeric excesses, which can be easily transformed to enantioenriched tetrahydro‐γ‐carbolines.

  相似文献   


13.
14.
15.
An efficient method for asymmetric synthesis of acyclic α-tertiary amine derivatives has been achieved through enantioselective aminations of α-branched ynones with azodicarboxylates enabled by chiral phosphoric acid catalysis.Moreover,kinetic resolution of racemic starting material was realized under these conditions,which gave access to valuable enantioenriched α-substituted ketones.  相似文献   

16.
17.
18.
19.
20.
N‐Boc ketimines derived from pyrazolin‐5‐ones were explored to develop an unprecedented domino aza‐Friedel–Crafts/N,O‐acetalization reaction with 2‐naphthols. The novel method requires a catalyst loading of only 0.5 mol % of a bifunctional squaramide catalyst, is scalable to gram amounts, and provides a new series of furanonaphthopyrazolidinone derivatives bearing two vicinal tetra‐substituted stereogenic centers in excellent yields (95–98 %) and stereoselectivity (>99:1 d.r. and 97–98 % ee ). A different reactivity was observed in the case of 1‐naphthols and other electron‐rich phenols, which led to the aza‐Friedel–Crafts adducts in 70–98 % yield and 47–98 % ee .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号