首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Currently, all standard force fields for biomolecular simulations use point charges to model intermolecular electrostatic interactions. This is a fast and simple approach but has deficiencies when the electrostatic potential (ESP) is compared to that from ab initio methods. Here, we show how atomic multipoles can be rigorously implemented into common biomolecular force fields. For this, a comprehensive set of local reference axis systems is introduced, which represents a universal solution for treating atom‐centered multipoles for all small organic molecules and proteins. Furthermore, we introduce a new method for fitting atomic multipole moments to the quantum mechanically derived ESP. This methods yields a 50–90% error reduction compared to both point charges fit to the ESP and multipoles directly calculated from the ab initio electron density. It is shown that it is necessary to directly fit the multipole moments of conformational ensembles to the ESP. Ignoring the conformational dependence or averaging over parameters from different conformations dramatically deteriorates the results obtained with atomic multipole moments, rendering multipoles worse than partial charges. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise because of (1) the transfer of torque between neighboring atoms and (2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry‐dependent multipole models. In this study, atomic force expressions for geometry‐dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives . The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen‐bonded dimers are used to test the intermolecular electrostatic energies and atomic forces calculated by geometry‐dependent multipoles fit to the ab initio electrostatic potential. The electrostatic energies and forces are compared with their reference ab initio values. It is shown that both static and geometry‐dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, whereas geometry‐dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry‐dependent multipole models. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
5.
We present a polarisable multipolar interatomic electrostatic potential energy function for force fields and describe its application to the pilot molecule MeNH-Ala-COMe (AlaD). The total electrostatic energy associated with 1, 4 and higher interactions is partitioned into atomic contributions by application of quantum chemical topology (QCT). The exact atom–atom interaction is expressed in terms of atomic multipole moments. The machine learning method Kriging is used to model the dependence of these multipole moments on the conformation of the entire molecule. The resulting models are able to predict the QCT-partitioned multipole moments for arbitrary chemically relevant molecular geometries. The interaction energies between atoms are predicted for these geometries and compared to their true values. The computational expense of the procedure is compared to that of the point charge formalism.  相似文献   

6.
Summary We compare two methods (Mulliken charges and a distributed multipole analysis, DMA) of representing an ab initio charge distribution for calculating the electrostatic field and potential outside the molecule, using pyrimidine and the RNA base uracil as examples. This is done using a 3-D graphical display of the electrostatic fields, which, when used with real-time rotation, zooming and clipping, has many advantages for qualitatively assessing the electrostatic interactions of a molecule. The errors involved in using Mulliken point charges may be of similar magnitude to the total electrostatic field in regions which are important in recognition processes. The DMA representation automatically includes the anisotropic electrostatic effects of non-spherical features in the charge distribution of each atom, and yet the displayed electrostatic fields around the atoms which have lone-pair density do not show marked anisotropy.  相似文献   

7.
A scheme to obtain approximate analytical functions for the atomic distributed multipole moments of the crystallographically different atoms within aluminosilicate and aluminophosphate sieves is discussed. Respective atomic multipole moments are derived within the CRYSTAL95 ab initio periodic Hartree–Fock code with different basis sets, from minimal STO‐3G to 6‐21G*. In order to illustrate the possible applications, distributed analyses are carried out for various structural models from all‐siliceous zeolites and aluminophosphates with ratio Al/P=1 to hydrogen forms of aluminosilicates. Simple approximate forms based on charge and geometry coordinates are proposed for the high‐order moments of each atom, which are further required for the calculation of the electrostatic field within the structures. The possibility to use this analytical approach to evaluate the electrostatic field within embedded cluster models is also shortly discussed. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 70–85, 2001  相似文献   

8.
9.
Results from several commonly used approximate methods of evaluating electrostatic interactions have been compared to the rigorous, nonexpanded electrostatic energies at both uncorrelated and correlated levels of theory. We examined a number of energy profiles for both hydrogen bonded and stacked configurations of the nucleic acid base pairs. We found that the penetration effects play an extremely important role and the expanded electrostatic energies are significantly underestimated with respect to the ab initio values. Apart from the inability to reproduce the magnitudes of the ab initio electrostatic energy, there are other problems with the available approximate electrostatic models. For example, the distributed multipole analysis, one of the most advanced methods, is extremely sensitive to the basis set and level of theory used to evaluate the multipole moments. Detailed ab initio results are provided that other researchers could use to test their approximate models.  相似文献   

10.
An empirical potential based on permanent atomic multipoles and atomic induced dipoles is reported for alkanes, alcohols, amines, sulfides, aldehydes, carboxylic acids, amides, aromatics and other small organic molecules. Permanent atomic multipole moments through quadrupole moments have been derived from gas phase ab initio molecular orbital calculations. The van der Waals parameters are obtained by fitting to gas phase homodimer QM energies and structures, as well as experimental densities and heats of vaporization of neat liquids. As a validation, the hydrogen bonding energies and structures of gas phase heterodimers with water are evaluated using the resulting potential. For 32 homo- and heterodimers, the association energy agrees with ab initio results to within 0.4 kcal/mol. The RMS deviation of hydrogen bond distance from QM optimized geometry is less than 0.06 ?. In addition, liquid self-diffusion and static dielectric constants computed from molecular dynamics simulation are consistent with experimental values. The force field is also used to compute the solvation free energy of 27 compounds not included in the parameterization process, with a RMS error of 0.69 kcal/mol. The results obtained in this study suggest the AMOEBA force field performs well across different environments and phases. The key algorithms involved in the electrostatic model and a protocol for developing parameters are detailed to facilitate extension to additional molecular systems.  相似文献   

11.
A molecular multipole expansion treatment (up to hexadecapole) is examined for its accuracy in describing hydrogen-bond electrostatic interactions, with particular reference to explaining the differences between blue-shifted C-H...O and red-shifted O-H...O bonds. In interactions of H2O and CH4 with point charges at hydrogen-bonding distances, we find that the molecular multipole treatment not only fails to reproduce ab initio energies but also forces on OH or CH bonds, and therefore cannot properly account for the electrostatic component of the interaction. A treatment based on a molecule's permanent charge density and its derivatives and the charge density and its derivatives induced by an external multipole distribution is in full accord with ab initio results, as shown by application to models of the H2O-H2O and CH4-FH systems. Such a charge density approach provides a fundamental basis for understanding the importance of interaction forces in initiating structural change and thereby altering molecular properties.  相似文献   

12.
《Chemical physics letters》1999,291(1-2):140-144
An overlap dependent formula for evaluating the charge penetration energy between non-orthogonal molecular orbitals is derived using the Spherical Gaussian Overlap approximation. When combined with an accurate multipole representation of the electrostatic energy, such as in the effective fragment potential method, ab initio electrostatic energies are generally reproduced to within 0.2 kcal/mol for a variety of molecular dimers and basis sets. The only larger error is for the DMSO dimer, where the electrostatic energy is overestimated by 0.7 kcal/mol.  相似文献   

13.
A potential-derived atomic multipole method called the cumulative potential-derived atomic multipole method is developed, with which electrostatic atomic multipole moments are derived by fitting the molecular electric potential in a cumulative way. It is applied to the hydrides of N , O , F , S , Cl , and methanol and the hydrogen-bonded dimers formed between them. The relationship between atomic multipole moments and molecular charge distributions is found. The structures calculated with Buckingham's electrostatic model are in good agreement with experiments. The phenomena of nonlinear structures of most H -bonded complexes—the deviations of symmetry axes of electron donors from H bonds—and correct distinguishing between two alternative structures are attributed to atomic dipole and quadrupole moments. Compared with other methods, this method has a quantitative and qualitative advantage and simple algorithm. The main conclusion is that the atomic multipole moments play a substantial role, although a potential-derived charge model was deemed sufficient previously. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
We report an implementation of an atomic multipole model (up to quadrupole) for calculating the electrostatic properties of molecules based on electron densities derived from MNDO-like NDDO-based semiempirical MO calculations with minimal s,p,d valence basis sets. The results were validated by a comparison of the calculated values of the molecular electrostatic potential with those obtained from fine grain numerical integrations (both with AM1*), B3LYP/6–31G(d) and MP2/6–31G(d). The DFT and ab initio potentials can be reproduced remarkably well (mean unsigned error <2 kcal mol−1 e−1) using simple linear regression equations to correct the AM1* (multipole) results. Dedicated to Prof. Karl Jug on the occasion of his 65th birthday  相似文献   

15.
Localized multipole moments up to the fifth moment as well as localized dipole polarizabilities are calculated with the MpProp and the newly developed LoProp methods for a total of 20 molecules, predominantly derived from amino acids. A comparison of electrostatic potentials calculated from the multipole expansion obtained by the two methods with ab initio results shows that both methods reproduce the electrostatic interaction with an elementary charge with a mean absolute error of approximately 1.5 kJ/mol at contact distance and less than 0.1 kJ/mol at distances 2 A further out when terms up to the octupole moments are included. The polarizabilities are tested with homogenous electric fields and are found to have similar accuracy. The MpProp method gives better multipole moments unless diffuse basis sets are used, whereas LoProp gives better polarizabilities.  相似文献   

16.
Common methods of determining atomic polarizabilities suffer from the inclusion of nonlocal effects such as charge polarization. A new method is described for determining fully ab initio atomic polarizabilities based on calculating the response of atomic multipoles to the local electrostatic potential. The localized atomic polarizabilities are then used to calculate induction energies that are compared to ab initio induction energies to test their usefulness in practical applications. These polarizabilities are shown to be an improvement over the corresponding molecular polarizabilities, in terms of both absolute accuracy and the convergence of the multipolar induction series. The transferability of localized polarizabilities for the alkane series is also discussed.  相似文献   

17.
4-31G wave functions have been computed for five purines and pyrimidines. The calculated deformation densities have been partitioned into atomic fragments, which were integrated to yield atomic multipole moments. The transferability of atomic fragments between related molecules was verified by constructing model maps for uracil and guanine from appropriate fragments of cytosine and adenine. Model electrostatic potentials calculated from the moments of model atoms are similar to the corresponding 4-31G potentials. Comparison of 4-31G and 4-31G** deformation densities of cytosine provides simple rules for estimating the effects of polarization functions on the atomic multipole moments of most atom types occurring in the purines and pyrimidines. These rules were applied to the other molecules and yielded reasonable approximations for their molecular dipole moments. Substituting CH3 for H has little effect on the deformation density beyond the substitution center.  相似文献   

18.
ZHANG Yu① 《结构化学》2005,24(4):462-466
1 INTRODUCTION AIDS, in other words, Acquired Immunodefici-encysyndrome, is a viral contagious disease withhigh death rate. However, effective treatment againstit has not appeared so far. At present, about 100kinds of natural compounds that could be extractedfrom natural products or artificially synthesized havebeen found to have anti-HIV activities to some ex-tent. They belong to flavonoid, terpenoid, steroid, cou-marin, peptide, alkaloid etc., respectively. Previousstudies show that…  相似文献   

19.
20.
Polarizable quantum mechanical (QM)/molecular mechanics (MM)‐embedding methods are currently among the most promising methods for computationally feasible, yet reliable, production calculations of localized excitations and molecular response properties of large molecular complexes, such as proteins and RNA/DNA, and of molecules in solution. Our aim is to develop a computational methodology for distributed multipole moments and their associated multipole polarizabilities which is accurate, computationally efficient, and with smooth convergence with respect to multipole order. As the first step toward this goal, we herein investigate different ways of obtaining distributed atom‐centered multipole moments that are used in the construction of the electrostatic part of the embedding potential. Our objective is methods that not only are accurate and computationally efficient, but which can be consistently extended with site polarizabilities including internal charge transfer terms. We present a new way of dealing with well‐known problems in relation to the use of basis sets with diffuse functions in conventional atomic allocation algorithms, avoiding numerical integration schemes. Using this approach, we show that the classical embedding potential can be systematically improved, also when using basis sets with diffuse functions, and that very accurate embedding potentials suitable for QM/MM embedding calculations can be acquired. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号