首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The preparation of a disaccharide 2, Neu5Ac-alpha-(2-->5)Neu5Gc having a alpha-benzyl protecting group at the reducing end, by the coupling of the easily accessible building units 4 and 5 is described. Subsequent deprotection of the coupling adduct led to the isolation of the target compound 2 in high yield.  相似文献   

2.
The synthesis of a sialic acid dimer derivative, Neu5Acalpha(2-->5)Neu5Gc, is described. The synthetic strategy is based on the use of allyl alcohol to achieve an exclusive alpha-sialylation product. The allyloxy group is also a latent glycolic acid that provides the subsequent coupling with neuraminate with minimal protection-deprotection manipulations.  相似文献   

3.
Human lung epithelial cells natively offer terminal N‐acetylneuraminic acid (Neu5Ac) α(2→6)‐linked to galactose (Gal) as binding sites for influenza virus hemagglutinin. N‐Glycolylneuraminic acid (Neu5Gc) in place of Neu5Ac is known to affect hemagglutinin binding in other species. Not normally generated by humans, Neu5Gc may find its way to human cells from dietary sources. To compare their influence in influenza virus infection, six trisaccharides with Neu5Ac or Neu5Gc α(2→6) linked to Gal and with different reducing end sugar units were prepared using one‐pot assembly and divergent transformation. The sugar assembly made use of an N‐phthaloyl‐protected sialyl imidate for chemoselective activation and α‐stereoselective coupling with a thiogalactoside. Assessment of cytopathic effect showed that the Neu5Gc‐capped trisaccharides inhibited the viral infection better than their Neu5Ac counterparts.  相似文献   

4.
Recombinant transsialidase from Trypanosoma cruzi (TcTS) was used for the sialylation with natural and non-natural derivatives of neuraminic acid. Neu5Ac-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe was prepared in 80 % yield. Correspondingly, the modified trisaccharide derivatives Neu5Prop-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (32 %) and Neu5Gc-alpha(2-->3)-Gal-beta(1-->6)-Glc-alphaOMe (Prop=propanoyl, Gc=glycolyl) were obtained in 60 % yield, respectively.  相似文献   

5.
The chemical synthesis of isoxanthopterin and 6‐phenylisoxanthopterin N8‐(2′‐deoxy‐β‐D ‐ribofuranosyl nucleosides) is described as well as their conversion into suitably protected 3′‐phosphoramidite building blocks to be used as marker molecules for DNA synthesis. Applying the npe/npeoc (=2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl) strategy, we used the new building blocks in the preparation of oligonucleotides by an automated solid‐support approach. The hybridization properties of a series of labelled oligomers were studied by UV‐melting techniques. It was found that the newly synthesized markers only slightly interfered with the abilities of the labelled oligomers to form stable duplexes with complementary oligonucleotides.  相似文献   

6.
The Tn, T, sialyl-Tn, and 2,3-sialyl-T antigens are tumor-associated carbohydrate antigens expressed on mucins in epithelial cancers, such as those affecting the breast, ovary, stomach, and colon. Glycopeptides carrying these antigens are of interest for development of cancer vaccines and a short, chemoenzymatic strategy for their synthesis is reported. Building blocks corresponding to the Tn (GalNAc alpha-Ser/Thr) and T [Gal beta(1-->3)GalNAc alpha-Ser/Thr] antigens, which are relatively easy to obtain by chemical synthesis, were prepared and then used in the synthesis of glycopeptides on the solid phase. Introduction of sialic acid to give the sialyl-Tn [Neu5Ac alpha(2-->6)GalNAc alpha-Ser/Thr] and 2,3-sialyl-T [Neu5Ac alpha(2-->3)Gal beta(1-->3)GalNAc alpha-Ser/Thr] antigens is difficult when performed chemically at the building block level. Sialylation was therefore carried out with recombinant sialyltransferases in solution after cleavage of the Tn and T glycopeptides from the solid phase. In the same manner, the core 2 trisaccharide [Gal beta 1-->3(GlcNAc beta 1-->6)GalNAc] was incorporated in glycopeptides containing the T antigen by using a recombinant N-acetylglucosaminyltransferase. The outlined chemoenzymatic approach was applied to glycopeptides from the tandem repeat domain of the mucin MUC1, as well as to neoglycosylated derivatives of a T cell stimulating viral peptide.  相似文献   

7.
F Y Che  X X Shao  K Y Wang  Q C Xia 《Electrophoresis》1999,20(14):2930-2937
A simple and highly sensitive capillary electrophoresis (CE) method for determining the content of N-acetylneuraminic acid (Neu5Ac) in glycoproteins was developed. Neu5Ac was derivatized with 2-aminoacridone (AMAC) by reductive amination, and the AMAC-Neu5Ac adduct could be readily separated from the other 11 AMAC-derivatized neutral and acidic monosaccharides usually present in glycoproteins by CE in a 0.3 mol/L borate buffer, pH 10.5, and detected at 260 nm. The derivatization of Neu5Ac was achieved at 55 degrees C for 4 h. AMAC-Neu5Ac was stable at 20 degrees C in the dark for at least 12 h while at room temperature it spontaneously converted into another substance with a lower electrophoretic mobility, which was identified as decarboxylated AMAC-Neu5Ac by high performance liquid chromatography - ion trap mass spectrometry (HPLC-ITMS). Concentration and mass of Neu5Ac as low as 1 micromol/L and 35 fmol could be detected. The linear correlation coefficient between the ratio of peak area to migration time of AMAC-Neu5Ac and the concentration of Neu5Ac ranging from 10 to 120 micromol/L was 0.9978 (n=8). This method was successfully applied to the analysis of sialic acid in human urinary trypsin inhibitor (hu-UTI), bovine alpha1-acid glycoprotein (alpha1-AGP) and recombinant human erythropoietin (rhu-EPO). By combination of CE and HPLC-ITMS we found that N-glycolylneuraminic acid (Neu5Gc) was present in bovine alpha1-AGP in addition to Neu5Ac, with a quantity comparable to that of the latter.  相似文献   

8.
N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) are the dominant sialic acids (Sia) in mammals usually found in the non-reducing terminal of oligosaccharide side chains in glycoproteins and glycolipids. Their expression and distribution pattern have been correlated both with the malignant phenotype and tumor grade of human cancers. The aim of the present study was to determine by reversed-phase HPLC method the amounts of Neu5Ac and Neu5Gc as well as their distribution among the culture media and cell surface of MG-63 and Saos-2 human osteosarcoma cell lines of high and low metastatic potential. It was determined that MG-63 cells produce up to 5-fold more total sialic acid as compared with the Saos 2 cells. Neu5Ac accounts for ca 60% of the total sialic acids secreted by MG-63 cells, whereas Neu5Gc is the predominant sialic acid present on the MG-63 cell membrane. Saos 2 cells secrete considerable amounts of Neu5Ac to culture media. The obtained data indicate that the human osteosarcoma cells express both forms of Sia-containing glycoconjugates; the differences in the amounts of each of the two major Sia types and their distribution may be related to their differences in morphology and/or metastatic potentials.  相似文献   

9.
Sialic acids are essential components of host‐cell surface receptors for infection of influenza virus. To investigate the specific receptor structures recognized by various influenza A viruses, a series of lacto‐ and neolacto‐series ganglioside analogs containing N‐glycolylneuraminic acid (Neu5Gc) have been synthesized. The pentasaccharide structures of Neu5Gc‐α‐(2→3)/(2→6)‐lactotetraose (IV3(6)Neu5GcLcOse) and Neu5Gc‐α‐(2→3)/(2→6)‐neolactotetraose (IV3(6)Neu5GcnLcOse) were constructed by glycosylation of the suitably protected trisaccharide acceptors (2A and 2B) with the Neu5Gc‐α‐(2→3)/(2→6)‐Gal trichloroacetimidate donors (1 and 21), respectively. Transformation of the 2‐(trimethylsilyl)ethyl group at the reducing end in 4, 11, 23, and 30 into the trichloroacetimidate group gave a series of Neu5Gc‐α‐(2→3)/(2→6)‐lacto‐ and neolactotetraose donors (7, 13, 26, and 33), which were coupled with 2‐(tetradecyl)hexadecanol (8), to give the corresponding glycolipids (9, 14, 27, and 34). Finally, the complete removal of the O‐acyl groups and saponification of the methyl ester group gave the desired ganglioside analogs (10, 15, 28, and 35).  相似文献   

10.
Sialic acids containing glycoconjugates are very common in human neoplasias and their expression frequently correlates with malignant phenotype and the tumor grade. The majority of tumor markers containing sialic acids in man involve changes in the amount of total sialic acids and in the presence of the two main sialic acid types, Neu5Ac and Neu5Gc, and their derivatives. The aim of the present study was to examine whether malignant mesothelioma cell lines synthesize sialic acid containing glycoconjugates at both the extracellular and cell membrane levels and particularly whether the type and the content of Neu5Ac and Neu5Gc are of biological importance for mesothelioma cell differentiation and evaluation of its prognosis. The study was performed in three human malignant mesothelioma cell lines, two with a fibroblast like phenotype (STAV-FCS and Vester) and one of epithelial differentiation (STAV-AB), which developed from the pleural effusions of patients with malignant mesothelioma and in one human adenocarcinoma cell line (Wart). Neu5Ac and Neu5Gc were determined following a mild hydrolysis step and a sample clean-up procedure. The determination was performed by reversed-phase HPLC after the NeuAc and NeuGc had been converted to per-O-benzoylated derivatives. It was found that Neu5Gc is the major sialic acid in the culture media of all cell lines examined. Molar ratios of Neu5Ac to Neu5Gc showed that Neu5Gc is the predominant sialic acid in the culture medium of the fibroblast-like mesothelioma cells. Neu5Ac is almost undetectable in the cell membrane, whereas Neu5Gc is present in considerable amounts. The obtained results suggest that the type and the content of Neu5Ac and Neu5Gc in culture media are of biological importance for mesothelioma cell differentiation and may be of value in the evaluation of prognosis.  相似文献   

11.
The syntheses of the 3′‐O‐(4,4′‐dimethoxytrityl)‐protected 5′‐phosphoramidites 25 – 28 and 5′‐(hydrogen succinates) 29 – 32 , which can be used as monomeric building blocks for the inverse (5′‐3′)‐oligodeoxyribonucleotide synthesis are described (Scheme). These activated nucleosides and nucleotides were obtained by two slightly different four‐step syntheses starting with the base‐protected nucleosides 13 – 20 . For the protection of the aglycon residues, the well‐established 2‐(4‐nitrophenyl)ethyl (npe) and [2‐(4‐nitrophenyl)ethoxy]carbonyl (npeoc) groups were used. The assembly of the oligonucleotides required a slightly increased coupling time of 3 min in application of the common protocol (see Table 1). The use of pyridinium hydrochloride as an activator (instead of 1H‐tetrazole) resulted in an extremely shorter activation time of 30 seconds. We established the efficiency of this inverse strategy by the synthesis of the oligonucleotide 3′‐conjugates 33 and 34 which carry lipophilic caps derived from cholesterol and vitamin E, respectively, as well as by the formation of (3′‐3′)‐ and (5′‐5′)‐internucleotide linkages (see Table 2).  相似文献   

12.
This paper presents a short synthesis of new analogs of N-acetylneuraminic acid (Neu5Ac) varied structurally at C-5. The synthetic strategy includes indium-mediated coupling reactions between ethyl 2-(bromomethyl)acrylate and N-derivatized mannosamines, and the ozonolysis of the resulting enoates. The main advantage of this indium-mediated allylation for the synthesis of neuraminic acids comes from the efficient, stereoselective C-C bond formation, which affords predominantly the correct diastereomer having a threo relationship between the newly generated hydroxyl group and the C-2 amide group of mannosamine. By this approach, Neu5Boc (4a), Neu5Gly (4b), Neu5(6-NHCbz)hexanoyl (4c), and Neu5(1-naphthyl)acetyl (4d) were prepared in three steps (overall approximately 50%). In addition, several N-substituted neuraminic acids were synthesized by N-acylation of the amino functionality of neuraminic acid (5b), which was obtained by deprotecting the N-Boc group of Neu5Boc (4a). These analogs include Neu5BrAc (6a), Neu5acryloyl (6b), Neu5benzoyl (6c) and Neu5benzoyl-4-benzoyl (6d). The N-acylation method is especially suited for synthesis of neuraminic acids bearing substituents that can not tolerate ozonolysis or that are unstable (photo)chemically. Finally, we illustrate the utility of synthetic neuraminic acids by converting 4c to a derivative of 2-deoxy-2,3-didehydroneuraminic acid (8c), a precursor to inhibitors of neuraminidases.  相似文献   

13.
[reaction: see text] A coupling protocol has been developed which allows the synthesis of oligo(p-benzamide)s on solid support. Aromatic carboxylic acids are activated in situ with thionyl chloride and used to acylate secondary aromatic amines. N-p-Methoxy benzyl (PMB) as well as N-hexyl protected monomers were investigated. Heterosequences of both monomers were synthesized. Such nanoscale objects are important building blocks for supramolecular chemistry.  相似文献   

14.
We newly prepared para- and meta-linked alkynylpyrene oligomers and examined their photophysical properties. Oligomerization of monomeric building blocks was performed by CuI-promoted oxidative coupling reaction. The resulting oligomers mainly consist of 2-mer to 6-mer that were assigned on the basis of MALDI-TOF mass spectra, and the 2-mer, 3-mer, and 4-mer were isolated and fully characterized. From their absorption and fluorescence spectra, the para-linked oligomers were found to be somewhat pi-conjugated compared with meta-linked ones, and the fluorescence quantum yields decreased with increasing oligomer length (Phif = 0.79-0.55).  相似文献   

15.
This paper describes the design and synthesis of a conformationally rigid dimer building block Umpc3Um as a chiral center at the phosphate group with the S/N junction where c3 refers to a propylene bridge linked between the uracil 5-position and 5'-phosphate group of pUm. The extensive H1 NMR analysis of Umpc3Um suggests that the 5'-upstream Um has predominantly a C2'-endo conformation and the pc3Um moiety exists almost exclusively in a C3'-endo conformation. The absolute configuration of the diastereomers Umpc3Um(fast) (8a) and Umpc3Um(slow) (8b) was determined by CD spectroscopy as well as computer simulations. The oligonucleotides U4[Umpc3Um(fast)]U4 (13a) and U4[Umpc3Um(slow)]U4 (13b) incorporating 8a and 8b were synthesized by use of the phosphoramidite building blocks 11a and 11b, respectively. The Tm experiments of the duplexes formed between these modified oligomers and the complementary oligomers imply that the modified oligomer 13a having Umpc3Um(fast) has the Sp configuration at the chiral phosphoryl group.  相似文献   

16.
Ortner K  Buchberger W 《Electrophoresis》2008,29(10):2233-2237
A simple method for the determination of the two most abundant sialic acids released from glycoproteins based on CZE-MS is presented. Several parameters like BGE with various organic modifiers and sheath liquids were studied with respect to their suitability for the fast and easy analysis of the selected compounds by CZE-MS. Finally, a BGE containing 10 mM ammonium acetate allowed the quantification of N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) in glycoproteins as well as human plasma samples. LOD and LOQ were 2 microg/mL and 6 microg/mL, respectively.  相似文献   

17.
5-Hydroxymethyl-pyrimidine-based nucleobases have attracted attention in the last years due to their important role in gene regulation. It prompted the development of efficient routes to the corresponding nucleoside building blocks for further incorporation into oligonucleotides. Several pathways have been employed in recent years to access properly protected 5-hydroxymethyl-pyrimidine based nucleosides, including hydroxymethylation of 2’-deoxyuridine, radical bromination of thymidine followed by bromine substitution, or carbonylative coupling through Stille conditions starting from 5-iodo-2’-deoxyuridine. In this study, we review the different approaches currently used to introduce the 5-hydroxymethyl moiety, we reinvestigate some of them, and finally, we propose an alternative route based on the oxidation of the methyl of thymidine followed by its reduction that allows access to protected 5-hydroxymethyl-2’-deoxyuridine in a simple way with good yields. Finally, we present some examples of application including the synthesis of base J and 5-azidomethyl-2’-deoxyuridine.  相似文献   

18.
We describe the development of a solid-phase technique for the synthesis of 5'-peptide-oligonucleotide conjugates (POCs) with a uniform protection strategy for the nucleic acid and the peptide fragments. On the alpha-amino function, the amino acid building blocks were protected with the 2-(biphenyl-4-yl)propan-2-yloxycarbonyl (Bpoc) group. This protection is removed during the stepwise peptide elongation by the same acidic conditions used for removal of the dimethoxytrityl (DMT) group used in the oligonucleotide assembly (3% trichloroacetic acid, 2 min). The 2-(3,5-dimethoxyphenyl)propan-2-yloxycarbonyl (Ddz) group was also tested. With this somewhat more stable group, a prolonged contact with the acid (at least 16 min) was required for accomplishing complete alpha-amino deprotection, which resulted in some degree of depurination of the acid-sensitive DNA chain. Base-labile acyl protections were adopted for the side-chains of histidine, lysine, and the nucleobase amino functions. These were all removed in the final deblocking step by ammonolysis. This uniform protection scheme for the peptide and the oligonucleotide enabled the total stepwise synthesis of model conjugates in the 3' --> N direction with high efficiency and purity.  相似文献   

19.
A rapid, efficient and scalable synthesis of biologically-relevant N-glycolylneuraminic acid derivatives from the natural N-acetyl (Neu5Ac) precursors has been developed. Microwave irradiation provides accelerated de-N-acetylation compared to more traditional methods, with optimised NaOH-promoted de-N-acetylation in only 15 min. The prepared amines were readily re-N-acylated to afford the corresponding N-glycolyl (Neu5Gc) analogues.  相似文献   

20.
The growing interest in synthetic peptides has prompted the development of viable methods for their sustainable production. Currently, large amounts of toxic solvents are required for peptide assembly from protected building blocks, and switching to water as a reaction medium remains a major hurdle in peptide chemistry. We report an aqueous solid‐phase peptide synthesis strategy that is based on a water‐compatible 2,7‐disulfo‐9‐fluorenylmethoxycarbonyl (Smoc) protecting group. This approach enables peptide assembly under aqueous conditions, real‐time monitoring of building block coupling, and efficient postsynthetic purification. The procedure for the synthesis of all natural and several non‐natural Smoc‐protected amino acids is described, as well as the assembly of 22 peptide sequences and the fundamental issues of SPPS, including the protecting group strategy, coupling and cleavage efficiency, stability under aqueous conditions, and crucial side reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号