首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we compare and contrast the processes of nucleation and subsequent growth of single-atom wide metal chains formed when group III metals (Al, Ga, In) are deposited onto Si(1 0 0) at room-temperature (RT). Employing Density Functional Theory (DFT) calculations, diffusion pathways on Si(1 0 0) surface are identified and their associated activation barriers are calculated. Then, the relative stabilities of various C-defect-pinned chains are examined by comparing the relevant adsorption energies. We also account for the observation that defect-nucleated chains grow on only one side of a C-defect by showing that the latter’s presence breaks the symmetry between the two previously equivalent binding sites on either side and rendering one much more stable than the other. Next, a growth model tailored for each group III metal/Si(1 0 0) system and incorporating the above results was simulated using Kinetic Monte Carlo (KMC) techniques to show that the surface morphologies generated by this model accurately reflect the observed ratio of homogeneously to heterogeneously nucleated chains. Finally, we examine through KMC simulations the consequences of the contrasting roles of a defect on In/Si(1 0 0) and Al/Si(1 0 0) – it captures adatoms in the former while it merely blocks direct adatom diffusion in the latter – on key quantities such as the mean island density.  相似文献   

2.
Thin InAs epilayers were grown on GaAs(1 0 0) substrates exactly oriented and misoriented toward [1 1 1]A direction by atmospheric pressure metalorganic vapor phase epitaxy. InAs growth was monitored by in situ spectral reflectivity. Structural quality of InAs layers were studied by using high-resolution X-ray diffraction. No crystallographic tilting of the layers with respect to any kind of these substrates was found for all thicknesses. This result is discussed in terms of In-rich growth environment. InAs layers grown on 2° misoriented substrate provide an improved crystalline quality. Surface roughness of InAs layers depend on layer thickness and substrate misorientation.  相似文献   

3.
Surface mechanical attrition treatment (SMAT) improves mechanical properties of metallic materials through the formation of nanocrystallites at their surface layer. It also modifies the morphology and roughness of the work surface. Surface roughening by the SMAT has been reported previously in a smooth specimen, however in this study the starting point was a rough surface and a smoothening phenomenon is observed. In this paper, the mechanisms involved in the surface smoothening of AISI 316L stainless steel during the SMAT are elucidated. The SMAT was conducted on a specimen with a roughness of Ra = 3.98 μm for 0–20 min. The size of milling balls used in the SMAT was varied from 3.18 mm to 6.35 mm. The modification of subsurface microhardness, surface morphology, roughness and mass reduction of the specimen due to the SMAT were studied. The result shows the increasing microhardness of the surface and subsurface of the steel due to the SMAT. The impacts of milling balls deform the surface and produce a flat-like structure at this layer. Surface roughness decreases until its saturation is achieved in the SMAT. The mass reduction of the specimens is also detected and may indicate material removal or surface erosion by the SMAT. The size of milling ball is found to be the important feature determining the pattern of roughness evolution and material removal during the SMAT. From this study, two principal mechanisms in the evolution of surface morphology and roughness during the SMAT are proposed, i.e. indentation and surface erosion by the multiple impacts of milling balls. A comparative study with the results of the previous experiment indicates that the initial surface roughness has no influence in the work hardening by the SMAT but it does slightly on the saturated roughness value obtained by this treatment.  相似文献   

4.
The effect of the growth rate on the Bi2Sr2CaCu2Oy (Bi2212) thin film quality on MgO substrate is investigated at several growth rates from 0.175 to 3 nm/min. The maximal step height on the film surface is improved from about 100 to 6 nm by the reduction of growth rate to 0.5 nm/min and simultaneously the superconducting critical temperature attaining to a zero resistance Tc(R=0), is also improved from 50 to 63 K. The surface morphologies of the upmost Bi-superconducting thin films with the intermediate layers on MgO substrate is also studied in contrast to that deposited directly on the MgO substrate.  相似文献   

5.
Graphene growth of mono-, bi- and tri-layers on Ni(111) through surface segregation was observed in situ by low energy electron microscopy. The carbon segregation was controlled by adjusting substrate temperature from 1200 K to 1050 K. After the completion of the first layer at 1125 K, the second layer grew at the interface between the first-layer and the substrate at 1050 K. The third layer also started to grow at the same temperature, 1050 K. All the layers exhibited a 1 × 1 atomic structure. The edges of the first-layer islands were straight lines, reflecting the hexagonal atomic structure. On the other hand, the shapes of the second-layer islands were dendritic. The edges of the third-layer islands were again straight lines similar to those of the first-layer islands. The phenomena presumably originate from the changes of interfacial-bond strength of the graphene to Ni substrate depending on the graphene thickness. No nucleation site of graphene layers was directly observed. All the layers expanded out of the field of view and covered the surface. The number of nucleation sites is extremely small on Ni(111) surface. This finding might open the way to grow the high quality, single-domain graphene crystals.  相似文献   

6.
Akihiro Ohtake 《Surface science》2012,606(23-24):1886-1891
Adsorption of Al atoms on the As-stabilized InAs(001)—(2 × 4) surface induces the formation of the Al-stabilized (2 × 4) reconstruction. The Al-stabilized (2 × 4) surface has mixed In–As dimer at the outermost layer with the Al atoms being incorporated into the subsurface layers. Heating of the Al-stabilized (2 × 4) surface further promotes the diffusion of Al into deeper layers, which results in the formation of the In-rich (4 × 2) structure with the ζa structure.  相似文献   

7.
《Applied Surface Science》2001,169(1-2):79-83
The kinetic surface roughening of the polished (1 1 0) plane of a single-crystal nickel is investigated using atomic force microscopy. The polished (1 1 0) surfaces exhibit the scaling behavior characterized by the roughness exponent α=0.83±0.05, the growth exponent β=0.83±0.07 and the skewness=−0.52±0.06, whose values are compared with the theoretical values in statistical growth models in deposition. These characteristics indicate that the scaling behavior of the polished nickel surfaces can be related to a statistical growth model of nonlinear diffusion dynamics in deposition.  相似文献   

8.
The steady-state oxygen permeation through dense La2NiO4 + δ ceramics, limited by both surface exchange and bulk ambipolar conduction, can be increased by deposition of porous layers onto the membrane surfaces. This makes it possible, in particular, to analyze the interfacial exchange kinetics by numerical modelling using experimental data on the oxygen fluxes and equilibrium relationships between the oxygen chemical potential, nonstoichiometry and total conductivity. The simulations showed that the role of exchange limitations increases on reducing oxygen pressure, and becomes critical at relatively large chemical potential gradients important for practical applications. The calculated oxygen diffusion coefficients in La2NiO4 + δ are in a good agreement with literature. In order to enhance membrane performance, the multilayer ceramics with different architecture combining dense and porous components were prepared via tape-casting and tested. The maximum oxygen fluxes were observed in the case when one dense layer, ~ 60 μm in thickness, is sandwiched between relatively thin (< 150 μm) porous layers. Whilst the permeability of such membranes is still affected by surface-exchange kinetics, increasing thickness of the porous supporting components leads to gas diffusion limitations.  相似文献   

9.
We have studied the formation of a Bi-induced (2 × 2) reconstruction on the InAs(111)B surface. In connection to the development of the (2 × 2) reconstruction, a two dimensional charge accumulation layer located at the bottom of the InAs conduction band appears as seen through a photoemission structure at the Fermi level. Not well ordered Bi layers do not induce a charge accumulation. The Bi-induced reconstruction reduces the polarization of the pristine surface and changes the initial charge distribution. InAsBi alloying occurs below the surface where Bi acts as charge donor leading to the charge accumulation layer.  相似文献   

10.
Cross sectional and plane-view transmission electron microscopy (X- and PV-TEM) were used to investigate the initial growth phase of 5, 10, 20 and 40 nm thick Ni1-xFex (x=0.6–0.8) films, prepared on MgO(0 0 1) covered with a buffer layer of Fe or Ni as well as on naked MgO(0 0 1). The 100 nm thick buffer layers of Fe and Ni were pre-grown on MgO(0 0 1). All of Ni0.20Fe0.80, Ni0.40Fe0.60, Fe and Ni films could be epitaxially grown at 250°C by dc-biased plasma sputtering at 2.9 kV in pure Ar gas.The films of Ni0.20Fe0.80 and Ni0.40Fe0.60 were grown in their own stable phase, bcc and fcc on MgO(0 0 1), respectively. However, Ni0.20Fe0.80 film could be grown in fcc phase pseudomorphic with Ni(0 0 1) up to 20 nm thick on Ni/MgO(0 0 1), while Ni0.40Fe0.60 film in bcc phase pseudomorphic with Fe(0 0 1) up to 10 nm thick on Fe/MgO(0 0 1). With increasing thickness, their growth phases transformed into their own stable phases. Whether or not the pseudomorphic phase may be induced and what its critical thickness may be should depend primarily on the lattice misfit between the crystal planes in contact. The growth mode of Ni0.40Fe0.60 film was investigated more in details to be compared with the simulations of the average strain energy versus thickness and with those of the critical thickness of the pseudomorphic films versus the lattice misfit between the contacted crystal planes.  相似文献   

11.
L. Tumbek  A. Winkler 《Surface science》2012,606(15-16):L55-L58
The nucleation and growth of organic molecules is usually discussed in the framework of diffusion limited aggregation (DLA). In this letter we demonstrate for the rod-like organic molecules hexaphenyl (6P) on sputter-modified mica, that under specific experimental conditions the nucleation has to be described by attachment limited aggregation (ALA). The crucial parameter for the growth mode is the roughness of the substrate surface, as induced by ion sputtering. With decreasing surface roughness the diffusion probability of the molecules increases and the growth mode changes from DLA to ALA. This was derived from the deposition rate dependence of the island density. A critical size of i = 7 molecules was determined for the nucleation of 6P on a moderately sputtered mica surface.  相似文献   

12.
《Current Applied Physics》2010,10(2):436-443
In the present paper molecular dynamics (MD) simulations have been preformed to investigate the surface melting process and microscopic mechanism of Nb(1 1 0) plane in the atomic scale with a modified analytic embedded atom method (MAEAM). On the basis of the MD relaxation dependence of averaged internal energy and layer structure factor at given temperatures, the melting point of the sample has been estimated to be 2510 K. Then by the above results the Nb(1 1 0) plane melting process has been approximately divided into two stages: first the layer-by-layer premelting phase in the surface region and then a simultaneous abrupt melting transition for the inner layers. According to the variation of the averaged internal energy of the inner atomic layer, the melting latent heat has been calculated and the result is in good agreement with the experimental value. The simulated snapshots of atomic configuration for Nb(1 1 0) plane have indicated that the dynamically microscopic mechanism of melting nucleation during the melting transition.  相似文献   

13.
The molecular surface structure of an ionic liquid (IL) with and without the presence of water was studied with the surface sensitive technique neutral impact collision ion scattering spectroscopy (NICISS). The IL chosen is 1-hexyl-3-methylimidazolium chloride, which is known to be hydrophilic. Binary mixtures were investigated within the water mole fraction range 0.43  χwater  0.71 at 283 K. During approximately 3 h exposition time in vacuum, we have observed a very low water loss rate from sample. The NICISS measurements suggest that admixture of water to [HMIm]Cl leads to a layered surface structure. Three layers were identified (layer 1 — cations, layer 2 — cations and water, layer 3 — cations, water, and anions). While the first layer is unaffected by water, the thickness of the second layer depends on the water concentration. The thickness of layer 2 is relatively constant for water concentrations χwater  0.61, but increases for water contents χwater  0.68. The concentration range 0.61  χwater  0.68 seems to play a key role in water network formation.  相似文献   

14.
In this paper, we have studied the characteristics of silicon dice, singulated using a high-power-high-repetition-rate femtosecond laser. The die strength and surface roughness, of the die side walls, are evaluated for different laser parameters such as pulsewidth and repetition rate. Since, the 80-μm-thick wafers used in this study were polished on both sides, die-edge roughness plays a decisive factor in determining the die strength when compared to backside roughness and wafer thickness as is the case in other studies. Excellent side wall average surface roughness of 0.35 μm is obtained at pulsewidth of 214 fs and repetition rate of 4.33 MHz using an average laser power of 15.5 W. Die strength is measured via the 3-point bending test. Strength reduction, due to die side wall surface defects that are induced through the wafer dicing process, is evaluated through die strength and surface roughness analysis. Die strength of a silicon dice is characterized as the first step in prediction and prevention of die failure during the package assembly, reliability test and working life. Improvement in the die side wall surface roughness is observed with the usage of nitrogen gas assist as compared to that obtained in air.  相似文献   

15.
The influence of the (2 × 1)O reconstruction on the growth of Ag on a Cu(110) surface was studied by scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). On the bare Cu(110) surface, Stranski–Krastanov growth of silver is observed at sample temperatures between 277 K and 500 K: The formation of a Ag wetting layer is followed by the growth of three-dimensional Ag wires. In contrast, on the oxygen-precovered Cu(110) surface, the growth of silver depends heavily on the substrate temperature. Upon Ag deposition at room temperature, a homogeneous, polycrystalline Ag layer is observed, whereas at 500 K, three-dimensional wires separated by (2 × 1)O reconstructed areas are formed. The behavior of a deposited Ag layer upon annealing is also influenced greatly by the presence of oxygen. On the bare surface, annealing does not change the Ag wetting layer and gives rise to Ostwald ripening of the Ag wires. On the oxygen-precovered surface, however, the initial polycrystalline Aglayer first transforms into Ag wires at around 500 K. Above this temperature, the depletion of the (2 × 1)O reconstructed areas due to Ag-induced O desorption is balanced by the formation of a Ag wetting layer. On both, the bare and the oxygen-precovered Cu(110) surface, the deposited silver diffuses into the Cu bulk at temperatures above 700 K.  相似文献   

16.
Herein, we report a type II InAs/GaSb superlattice structure (SLS) grown on GaSb(1 0 0) substrates by molecular beam epitaxy (MBE) and its electrical characterization for mid-wavelength infrared detection. A GaSb buffer layer was grown under optimized SLS growth conditions, which can decrease the occurrence of defects for similar pyramidal structures. The complications associated with these conditions include oxide desorption of the substrate, growth temperature of the SLS, the V/III ratio during superlattice growth and the shutter sequence. High-resolution X-ray diffraction (HRXRD) shows the sixth satellite peak, and the period of the SLS was 52.9 Å. The atomic force microscopy (AFM) images indicated that the roughness was less than 2.8 nm. High-resolution transmission electron microscopy (HRTEM) images indicated that the SLS contains few structural defects related to interface dislocations or strain relaxation during the growth of the superlattice layer. The photoresponse spectra indicated that the cutoff wavelength was 4.8 μm at 300 K. The SLS photodiode surface was passivated by a zinc sulfide (ZnS) coating after anodic sulfide.  相似文献   

17.
We have investigated the growth of submonolayer coverage of platinum on two gold surfaces (Au(1 1 1) and Au(7 8 8)), at temperatures ranging from 110 K to 300 K. The Scanning Tunneling Microscope images reveal a competition between the ordered growth of nanodots and a random intermixing between Pt and Au. The Pt deposition on the Au(1 1 1) surface at room temperature shows an ordered growth limited by the insertion of Pt atoms into the surface layer and the subsequent modifications of the herringbone surface pattern. In contrast, for Pt on the Au(7 8 8) stepped surface, perfect ordered growth is observed over a wide temperature range.  相似文献   

18.
In the silicon wet etching process, the “pseudo-mask” formed by the hydrogen bubbles generated during the etching process is the reason causing high surface roughness and poor surface quality. Based upon the ultrasonic mechanical effect and wettability enhanced by isopropyl alcohol (IPA), ultrasonic agitation and IPA were used to improve surface quality of Si (1 1 1) crystal plane during silicon wet etching process. The surface roughness Rq is smaller than 15 nm when using ultrasonic agitation and Rq is smaller than 7 nm when using IPA. When the range of IPA concentration (mass fraction, wt%) is 5–20%, the ultrasonic frequency is 100 kHz and the ultrasound intensity is 30–50 W/L, the surface roughness Rq is smaller than 2 nm when combining ultrasonic agitation and IPA. The surface roughness Rq is equal to 1 nm when the mass fraction of IPA, ultrasound intensity and the ultrasonic frequency is 20%, 50 W and 100 kHz respectively. The experimental results indicated that the combination of ultrasonic agitation and IPA could obtain a lower surface roughness of Si (1 1 1) crystal plane in silicon wet etching process.  相似文献   

19.
The optical properties of Sc/Si periodic multilayers are analyzed at three wavelengths in the X-ray range: 0.154, 0.712 and 12.7 nm. Fitting the reflectivity curves obtained at these three wavelengths enable us to constrain the parameters, thickness, density and roughness of the various layers, of the studied multilayers. Scattering curves were also measured at 12.7 nm on some samples to obtain an estimate of the correlation length of the roughness. Two sets of multilayers are used, with and without B4C diffusion barrier at the interfaces. To see the efficiency of the B4C layers the measures are performed after annealing up to 400 °C. A dramatic change of the structure of the Sc/Si multilayer is observed between 100 and 200 °C leading to a strong loss of reflectivity. For the Sc/B4C/Si/B4C multilayer the structure is stable up to 200 °C after which a progressive evolution of the stack occurs.  相似文献   

20.
Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at different substrate temperatures in the range, 250–450 °C for a manganese composition, x = 15%, on corning 7059 glass substrates. The as-grown layers were characterized to evaluate their chemical and physical behaviour with substrate temperature. The change of dopant level in ZnO films with substrate temperature was analysed using X-ray photoelectron spectroscope measurements. The X-ray diffraction studies revealed that all the films were strongly oriented along the (0 0 2) orientation that correspond to the hexagonal wurtzite structure. The crystalline quality of the layers increased with the increase of substrate temperature up to 400 °C and decreased thereafter. The crystallite size of the films varied in the range, 14–24 nm. The surface morphological studies were carried out using atomic force microscope and the layers showed a lower surface roughness of 4.1 nm. The optical band gap of the films was ∼3.35 eV and the electrical resistivity was found to be high, ∼104 Ω cm. The films deposited at higher temperatures (>350 °C) showed ferromagnetic behaviour at 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号