首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The influence of the substrate pretreatment on crystallinity of indium nitride films grown on (1 1 1)GaAs by radio frequency sputtering were investigated. It was shown that the crystalline quality of InN layers grown on GaAs can be improved by presputtering the substrate in nitrogen plasma prior to the growth. By Auger electron spectroscopy and atomic force microscopy analysis we revealed that GaN islands form on the surface of GaAs substrate due to the presputtering. The optimum presputtering time for growing InN single crystal was assessed to be the time at which GaN islands cover the substrate surface entirely.  相似文献   

2.
X-Ray Photoelectron Spectroscopy (XPS), Metastable Induced Electron Spectroscopy (MIES) and Ultraviolet Photoelectron Spectroscopy (UPS) were applied to study the interaction of H2O molecules with iron films.During the interaction with H2O molecules under ultrahigh vacuum conditions, an oxide film is formed on the iron surface. UPS and XPS still show metallic contributions, even for a surface which is exposed to about 103 L. The oxide film thickness amounts to about 1.8 nm. No hydroxide formation is observed at all, neither in UPS nor in MIES. Further impinging H2O molecules do not interact with the surface, because the oxide film inhibits the dissociation of impinging molecules.H2O exposure beyond 109 L does not lead to a significant increase of the oxide layer, which saturates at a thickness of 1.8 nm. In particular, no surface hydroxide is observed at this exposure. Neither XPS UPS nor MIES reveal any indication for this.  相似文献   

3.
《Current Applied Physics》2010,10(2):407-410
The aluminum (Al) interlayer with various thicknesses ranging from 0.75 to 6 nm was deposited on silicon (Si) substrates prior to the deposition of ultra-thin iron (Fe) catalyst for the growth of carbon nanotubes. In this paper we report the effect of ultra-thin Al interlayer on the growth of multiwalled carbon nanotubes (MWCNTs). The SEM was used to examine the microstructures of nanotubes. We observed as the Al interlayer thickness increases the height of nanotube decreases. Raman spectra of MWCNT showed typical D and G peaks at ∼1345 cm−1 and ∼1575 cm−1, respectively. The XPS revealed the presence of Al and Fe on the top of CNT surface which were further supported by TEM. The high resolution TEM results also revealed bamboo like CNTs with diameter ∼10–40 nm.  相似文献   

4.
Polycrystalline thin Ni films deposited onto GaAs (0 0 1) show a transition of the magnetic anisotropy depending on its thickness. The anisotropy is perpendicular to the film plane for the thicknesses of the film ⩽12 nm. This becomes in-plane in the films having thicknesses ⩾15 nm. The films are deposited onto the n-type GaAs (0 0 1) substrate by the usual thermal evaporation method and also by the electron beam evaporation in ultra high vacuum onto a GaAs epilayer in the standard molecular beam epitaxy system. The magnetization and ferromagnetic resonance (FMR) are observed in the temperature range from 4.2 to 300 K. For the discussion of the microscopic origin of the anomalous properties in magnetization and FMR experiments, the experimental results are reviewed by introducing a uniaxial anisotropy, which is calculated from the easy-axis and hard-axis magnetization data. This calculated anisotropy is able to explain the temperature and angle dependency of the FMR spectra of the Ni films. Hence the magnetization and FMR spectra are in agreement with the type of the anisotropy and its temperature dependency. In addition to these, the temperature dependence of the in-plane magnetic anisotropy is able to explain the previously reported anomalous effect of reducing the squareness at low temperatures in Ni/GaAs.  相似文献   

5.
《Current Applied Physics》2015,15(11):1478-1481
The internal field of GaN/AlGaN/GaN heterostructure on Si-substrate was investigated by varying the thickness of an undoped-GaN capping layer using electroreflectance spectroscopy. The four samples investigated are AlGaN/GaN heterostructure without a GaN cap layer (reference sample) and three other samples with GaN/AlGaN/GaN heterostructures in which the different thickness of GaN cap layer (2.7 nm, 7.5 nm, and 12.4 nm) has been considered. The sheet carrier density (ns) of a two-dimensional electron gas has decreased significantly from 4.66 × 1012 cm−2 to 2.15 × 1012 cm−2 upon deposition of a GaN capping layer (12.4 nm) over the reference structure. Through the analysis of internal fields in each GaN capping and AlGaN barrier layers, it has been concluded that the undiminished surface donor states (ns) of a reference structure and the reduced ns caused by the Au gate metal are approximately 5.66 × 1012 cm−2 and 1.08 × 1012 cm−2, respectively.  相似文献   

6.
We report here the growth of Ag film and its thermal stability on the TiO2(1 1 0)-(1×1) surface using combination techniques of low-energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). At a surface temperature as low as 125 K, a 2D growth of Ag films seems to occur for submonolayer coverages up to ∼0.8 ML. Annealing of low temperature grown Ag films to 500 K for coverage of 1–2.4 ML would result in the formation of metastable Ag layers with rest of Ag forming 3D needle-like islands on top of this Ag film.  相似文献   

7.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

8.
We have studied photoluminescence (PL) observed from single isoelectronic traps formed by nitrogen pairs in nitrogen δ-doped GaAs layers grown on GaAs(1 1 1)A substrates. The PL was composed of a single peak with a narrow linewidth of ∼80 μeV. Polarized PL measurements confirmed that the emission from single isoelectronic traps in nitrogen δ-doped GaAs(1 1 1) is unpolarized irrespective of nitrogen pair arrangements. These results can be explained by in-plane isotropy of the samples, which is consistent with the symmetrical property of GaAs(1 1 1), and demonstrate that utilizing (1 1 1) substrate is an effective means for obtaining unpolarized single photons, which are desirable for the application to quantum cryptography.  相似文献   

9.
To improve the quantum efficiency of GaN photocathode, we optimized the photocathode's structure in three aspects. We use AlN replacing GaN as the buffer layer, which can act as potential barrier to reflect electrons back to surface. The optimal thickness of emission layer is calculated as 162.5 nm, and considering the graded doping profile, we optimized the thickness as 180 nm. Three built-in electric fields are introduced by Mg graded dope, and the intensities of the high fields are calculated to give the quantitive results of their influence. After surface cleaning and activation, quantum efficiency of the optimized sample was increased and the highest value of 56% was achieved at 240 nm. More quantum efficiency enhancement is possible by further optimizing the photocathode structure.  相似文献   

10.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

11.
Magnetic and magneto-optical properties of MnSb films with different crystalline orientations on various semiconductors of GaAs(1 0 0), GaAs(1 1 1)A, B, and sapphire(0 0 0 1) have been measured by a vibrating sample magnetometer (VSM) and a home-made magneto-optical Kerr effect (MOKE) system. All these samples have their easy axes in the plane and show ferromagnetic properties. Among these samples, the film on GaAs(1 1 1)B has the lowest coercive force Hc and the largest squareness (SQ) value, whereas the film on GaAs(1 0 0) shows the largest Hc and the lowest SQ value. A large Kerr rotation angle of about 0.3° was observed at a wavelength of λ=632.8 nm for the film on sapphire in the field applied both parallel and perpendicular to the film plane. However, the MnSn films on other substrates do not have an observable Kerr rotation. The dynamic effect of the hysteresis was also measured using our MOKE system. As the frequency of applied magnetic field increases, the loop rounds off at the corners and the loop area increases.  相似文献   

12.
A. Hofmann  C. Pettenkofer 《Surface science》2012,606(15-16):1180-1186
CuInSe2(112) films were grown on GaAs(111)A substrates by molecular beam epitaxy. The resulting surface stoichiometry was deduced by consideration of results from various surface analytic techniques. The obtainable Cu/In stoichiometry range in XPS was 0.4–1.2, where 1.2 marks the onset of Cu2 ? xSe phase segregation at the surface and 0.4 corresponds to the copper-depleted surface with ordered defect compound (ODC) composition. For the stoichiometric CuInSe2(112) surface, a c(4 × 2) reconstruction of the zinc blende surface periodicity is observed in the LEED pattern, with three rotational domains present on the flat GaAs(111) substrate. With the use of stepped (111) substrates, domain formation could be suppressed. By comparison of the LEED data and concentration depth profiles from angle-resolved XPS, two types of surface reconstructions could be distinguished. According to surface energy calculations in the literature, these correspond to surfaces stabilized by either CuIn or 2VCu defects. The surface of copper-poor CuIn3Se5 shows no reconstruction of the zinc blende order.  相似文献   

13.
The use of the sequential electroless plating method allowed us to obtain the PdAgCu ternary alloy on top of dense stainless steel (SS) 316 L disks. The XRD analysis indicated that initially the nucleation of the two phases of the alloy (FCC and BCC) takes place, but the FCC/BCC ratio increases with the annealing time at 500 °C in H2 stream. After 162 h, the film contained only the FCC phase, which presents promising properties to be applied in the synthesis of hydrogen selective membranes. SEM cross-section results showed that a dense, continuous, defect-free film was deposited on top of the SS support, and the EDS data indicated that no significant gradient was present on the thickness of the film. XPS and LEIS allowed us to determine that Cu and Ag surface segregation takes place after annealing up to 500 °C/5 days. In the top-most surface layer, Ag enrichment takes place as determined by ARXPS experiments which can be the result of the lower surface tension of Ag compared to that of Cu and Pd. Increasing the annealing temperature results in an increase of the Ag surface segregation while the Cu concentration in the top-most surface layer decreases.  相似文献   

14.
《Applied Surface Science》2005,239(3-4):451-457
Well-ordered ultra-thin Al2O3 films were grown on NiAl (1 1 0) surface by exposing the sample at various oxygen absorption temperatures ranging from 570 to 1100 K at dose rates 6.6 × 10−5 and 6.6 × 10−6 Pa. From the results of low-energy electron diffraction (LEED), Auger electron spectrometer (AES) and X-ray photon spectroscopy (XPS) observations, it was revealed that oxidation mechanism above 770 K is different from well-known two-step process. At high temperature, oxidation and crystallization occurred simultaneously while in two-step process oxidation and crystallization occurred one after another. At high-temperature oxidation well-ordered crystalline oxide can be formed by a single-step without annealing. Well-ordered Al2O3 layer with thickness over 1 nm was obtained in oxygen absorption temperature 1070 K and a dose rate 6.6 × 10−6 Pa at 1200 L oxygen.  相似文献   

15.
A.V. Vasev 《Surface science》2008,602(11):1933-1937
Optical properties of MBE-grown GaAs(0 0 1) surfaces have been studied by spectroscopic ellipsometry under dynamic conditions of ramp heating and cooling after desorption of passivating As-cap-layer with low pressure H2 atmosphere (14 Torr) applied to the surface. The temperature dependence of GaAs pseudo-dielectric function with atomically smooth (0 0 1) surface carrying the fixed Ga-rich (4 × 2) reconstruction was obtained for the temperature range of 160–600 °C. It is shown ellipsometrically that GaAs(0 0 1) heating in the molecular hydrogen atmosphere results in the formation of hydrogenated layer on the surface.  相似文献   

16.
The W film was prepared on 1045 steel by magnetron sputtering, with the thickness of 2 μm, its surface and cross-section morphologies were investigated with SEM, and the phase structure was analyzed with XRD. X-ray stress determinator was utilized to measure its residual stress, and the nano-hardness and elastic modulus of the film were surveyed by nano-indentation tester. The results show that the surface of W film is very compact and smooth; the particles arranged regularly, the granularity of the thin film is about 1 μm. The microcracks, cavities and desquamation were not found in the film and interface, and the bonding between the W film and substrate is well. The XRD results showed that the W film had a body-centered cubic structure, the lattice constant: a = 0.316 nm, the growth preferred orientations are (1 1 0) and (2 2 0). The compressive stress (−169 MPa) was found on the surface. The average nano-hardness and elastic modulus of W film are 15.22 GPa, 176.64 GPa, respectively, and the mechanical properties of W film are well.  相似文献   

17.
AlTiN films with different nitrogen partial pressures were deposited using arc ion plating (AIP) technique. In this study, we systematically investigated the effect of the nitrogen partial pressure on composition, deposition efficiency, microstructure, macroparticles (MPs), hardness and adhesion strength of the AlTiN films. The results showed that with increasing the nitrogen partial pressure, the deposition rate exhibited a maximum at 1.2 Pa. Results of X-ray photoelectron spectroscopy (XPS) analysis revealed that AlTiN films were comprised of Ti–N and Al–N bonds. XRD results showed that the films exhibited a (1 1 1) preferred growth, and AlTi3N and TiAlx phases were observed in the film deposited at 1.7 Pa. Analysis of MPs statistics showed MPs decreased with the increase in the nitrogen partial pressure. In addition, the film deposited at 1.2 Pa possessed the maximum hardness of 38 GPa and the better adhesion strength.  相似文献   

18.
Thickness and chemical composition of the TiNxOy thin films deposited by reactive magnetron sputtering from Ti target at controllable oxygen flow rate were determined by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The films were deposited on carbon foils and amorphous silica (a-SiO2) substrates at 25 °C and 250 °C. The estimated film thickness is of 75-100 nm. The O/Ti atomic ratio in the films increases up to 1.5 with increasing oxygen flow rate, while that of N/Ti decreases from about 1.1 for TiN to 0.4 at the highest oxygen flow rate. Substantial out-diffusion of carbon from the substrate is observed which is independent of the substrate temperature. Films grown onto a-SiO2 substrates can be treated as homogeneous single layers without interdiffusion. It is more difficult to determine the nitrogen and oxygen content due to superposition of RBS signals arising from film and substrate. RBS analysis of the depth profile indicates that for the investigated films the carbon diffusion and oxidation not only at the topmost surface layers but over the bulk of the films were found. Comparison with XPS results indicates substantial oxygen adsorption at the surface of TiNx thin films obtained at zero oxygen flow rate.  相似文献   

19.
《Current Applied Physics》2010,10(2):416-418
We studied nonselective, vertical dry etching of GaAs and AlGaAs/GaAs structure in high pressure capacitively coupled BCl3/N2 plasmas. The operating pressure was fixed at 150 m Torr. We found that there was an optimized process condition for nonselective and vertical etching of GaAs and AlGaAs/GaAs at the relatively high pressure. It was noted that there was a range of % N2 (i.e. 20–40%) where nonselective etching of GaAs over AlGaAs could be achieved in the BCl3/N2 mixed plasma. We also found that dry etching of GaAs and AlGaAs/GaAs structure provided quite vertical and smooth surface when % N2 was in the range of 0–20% in the BCl3/N2 plasma. The maximum etch rates for GaAs (0.41 μm/min) and AlGaAs/GaAs structure (0.42 μm/min) were obtained with 20–30% N2 composition in the plasma.  相似文献   

20.
Spectroscopic investigations of individual single-crystalline GaN nanowires with a lateral dimensions of ~30–90 nm were performed using the spatially resolved technique of electron energy-loss spectroscopy in conjunction with scanning transmission electron microscope showing a 2-Å electron probe. Positioning the electron probe upon transmission impact and at aloof setup with respect to the nanomaterials, we explored two types of surface modes intrinsic to GaN, surface exciton polaritons at ~8.3 eV (~150 nm) and surface guided modes at 3.88 eV (~320 nm), which are in visible/ultra-violet spectral regime above GaN bandgap of ~3.3 eV (~375 nm) and difficult to access by conventional optical spectroscopies. The explorations of these electromagnetic resonances might expand the current technical interests in GaN nanomaterials from the visible/UV range below ~3.5 eV to the spectral regime further beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号