首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ru nanoclusters self-assemble over macroscopic sample areas during vapor deposition of Ru on monolayer graphene (MLG) on Ru(0001). The Ru nanoclusters form arrays with a mean lateral cluster diameter of ~ 20 Å, cluster heights of 1 or 2 ML, and a size distribution that remains nearly constant with increasing coverage. Combined scanning tunneling microscopy and density functional theory (DFT) show that the clusters are templated by the MLG/Ru(0001) moiré unit cell and identify the preferred binding site of the clusters as the low fcc region of the moiré. Cross-sectional transmission electron microscopy (TEM) and high-resolution TEM contrast simulations experimentally demonstrate that the interaction of the Ru clusters with the underlying MLG/Ru(0001) leads to a local lifting of the graphene layer of the template. DFT calculations confirm this mechanism of interaction of the Ru clusters with the strongly coupled MLG/Ru(0001). Weakening of the graphene-support coupling via oxygen intercalation is shown to have a major effect on the assembly of Ru nanocluster arrays. With a preferred binding site lacking on decoupled graphene, the Ru nanoclusters grow significantly larger, and clusters with 1 to 4 ML height can coexist.  相似文献   

2.
Adsorbed hydrogen and water were measured during the hydrogen evolution reaction (HER) on the low and high index planes of Pt in 0.5 M H2SO4 using infrared reflection absorption spectroscopy. Hydrogen is adsorbed at the atop site (atop H) on Pt(110) during the HER, whereas adsorbed hydrogen at the asymmetric bridge site (bridge H) is found on Pt(100). The band intensity of the adsorbed hydrogen depends on temperature, indicating that the bands are due to the intermediate species for the HER. The band of the atop H appears on stepped surfaces with (110) step, whereas the asymmetric bridge H is observed on Pt(211) = 3(111)–(100) and Pt(311) = 2(111)–(100) that have (100) step. The absence of the atop H on Pt(100), Pt(211), and Pt(311) can be attributed to the relative stability of the bridge site.  相似文献   

3.
Stefan F?rster  Wolf Widdra 《Surface science》2010,604(23-24):2163-2169
The growth of epitaxial ultrathin BaTiO3 films upon rf magnetron sputter deposition on a Pt(111) substrate has been studied by scanning tunnelling microscopy, low-energy electron diffraction, and X-ray photoelectron spectroscopy. The BaTiO3 films have been characterized from the initial stages of growth up to a film thickness of 4 unit cells. The deposited films develop a long-range order upon annealing at 1050 K in UHV. In the submonolayer regime a wetting layer is formed on Pt(111). Thicker films reveal a Stranski–Krastanov-like structure as observed with STM. By XPS a good agreement of the thin film stoichiometry with BaTiO3 single crystal data is determined. Due to annealing at 1150 K BaTiO3 forms large two-dimensional islands on the Pt(111) substrate. Different surface structures develop on the islands depending on the O2 partial pressure during annealing.  相似文献   

4.
The adsorption of carbon monoxide on Pt(111) was studied using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) spectroscopy. Two CO on-top signals at 2110 cm? 1 and 2097 cm? 1 have been detected under continuous CO exposure in a pressure range from 10? 7 to 100 mbar and at temperatures between 200 K and 300 K. The formation of the higher wavenumber signal is found to be kinetically limited below 200 K and by the presence of a stable c(4 × 2) adlayer in UHV. On the basis of the results presented in this study and previous experimental findings the two on-top signals are related to different CO compression layers on Pt(111) with θ > 0.5, hexagonal Moiré lattices and rectangular coincident site lattices.  相似文献   

5.
Graphene growth of mono-, bi- and tri-layers on Ni(111) through surface segregation was observed in situ by low energy electron microscopy. The carbon segregation was controlled by adjusting substrate temperature from 1200 K to 1050 K. After the completion of the first layer at 1125 K, the second layer grew at the interface between the first-layer and the substrate at 1050 K. The third layer also started to grow at the same temperature, 1050 K. All the layers exhibited a 1 × 1 atomic structure. The edges of the first-layer islands were straight lines, reflecting the hexagonal atomic structure. On the other hand, the shapes of the second-layer islands were dendritic. The edges of the third-layer islands were again straight lines similar to those of the first-layer islands. The phenomena presumably originate from the changes of interfacial-bond strength of the graphene to Ni substrate depending on the graphene thickness. No nucleation site of graphene layers was directly observed. All the layers expanded out of the field of view and covered the surface. The number of nucleation sites is extremely small on Ni(111) surface. This finding might open the way to grow the high quality, single-domain graphene crystals.  相似文献   

6.
We have investigated the growth of submonolayer coverage of platinum on two gold surfaces (Au(1 1 1) and Au(7 8 8)), at temperatures ranging from 110 K to 300 K. The Scanning Tunneling Microscope images reveal a competition between the ordered growth of nanodots and a random intermixing between Pt and Au. The Pt deposition on the Au(1 1 1) surface at room temperature shows an ordered growth limited by the insertion of Pt atoms into the surface layer and the subsequent modifications of the herringbone surface pattern. In contrast, for Pt on the Au(7 8 8) stepped surface, perfect ordered growth is observed over a wide temperature range.  相似文献   

7.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

8.
The growth of para-sexiphenyl (6P) thin films as a function of substrate temperature on Ir{111} supported graphene flakes has been studied in real-time with Low Energy Electron Microscopy (LEEM). Micro Low Energy Electron Diffraction (μLEED) has been used to determine the structure of the different 6P features formed on the surface. We observe the nucleation and growth of a wetting layer consisting of lying molecules in the initial stages of growth. Graphene defects – wrinkles – are found to be preferential sites for the nucleation of the wetting layer and of the 6P needles that grow on top of the wetting layer in the later stages of deposition. The molecular structure of the wetting layer and needles is found to be similar. As a result, only a limited number of growth directions are observed for the needles. In contrast, on the bare Ir{111} surface 6P molecules assume an upright orientation. The formation of ramified islands is observed on the bare Ir{111} surface at 320 K and 352 K, whereas at 405 K the formation of a continuous layer of upright standing molecules growing in a step flow like manner is observed.  相似文献   

9.
The synthesis of high quality single layer graphene on rhodium, g/Rh(111), is reported. The graphene layers are grown at 1060 K by low pressure chemical vapor deposition (CVD) using 3-pentanone as a precursor molecule. The presented growth technique shows an easy high quality production method for epitaxial graphene monolayers. The chemical composition and structural properties of such self-assembled monolayers were characterized by X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Scanning Tunneling Microscopy (STM) confirms the formation of a 3 nm super cell and a unique surface morphology which establishes the potential of g/Rh(111) as a template for molecules.  相似文献   

10.
The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moiré pattern with a 12 Å periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 22 Å periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface.  相似文献   

11.
The adsorption and desorption of the system CO/Pt(111) and C6H6/Pt(111) at 300 K has been investigated with a pulsed molecular beam method in combination with a microcalorimeter. For benzene the sticking probability has been measured in dependence of the coverage θ. For coverages θ > 0.8 transient adsorption is observed. From an analysis of the time-dependence of the molecular beam pulses the rate constant for desorption is determined to be 5.6 s? 1. With a precursor-mediated kinetic adsorption model this allows to obtain also the hopping rate constant of 95.5 s? 1. The measured adsorption enthalpies could be best described by (199 ? 77θ ? 51θ2) kJ/mol, in good agreement with the literature values. For CO on Pt(111) also transient adsorption has been observed for θ > 0.95 at 300 K. The kinetic analysis yields rate constants for desorption and hopping of 20 s?1 and 51 s?1, respectively. The heats of adsorption show a linear dependence on coverage (131 ? 38θ) kJ/mol between 0  θ  0.3, which is consistent with the desorption data from the literature. For higher coverage (up to θ = 0.9ML) a slope of ?63 kJ/mol describes the decrease of the differential heat of adsorption best. This result is only compatible with desorption experiments, if the pre-exponential factor decreases strongly at higher coverage. We found good agreement with recent quantum chemical calculations made for (θ = 0.5ML).  相似文献   

12.
The interlayer exchange coupling between Co/Pt perpendicular-to-plane magnetized layers across a thin IrMn spacer layer was experimentally studied. In contrast to earlier studies on interlayer coupling through antiferromagnetic NiO, which revealed an oscillatory coupling behavior as a function of NiO thickness, a ferromagnetic coupling was observed here in the range of IrMn thickness between 0.6 and 1.5 nm and antiferromagnetic between 1.5 and 2.5 nm. The antiferromagnetic coupling is attributed to an orange peel magnetostatic mechanism whereas the ferromagnetic coupling is attributed to an out-of-plane polarization of the antiferromagnetic IrMn layer induced by the interfacial exchange interaction with the adjacent out-of-plane ferromagnetic layers. Measurements of hysteresis loops versus temperature show that the coupling vanishes at 510 K for tIrMn=1 nm. This critical temperature is far below the Néel temperature of bulk IrMn, but above the blocking temperature of IrMn/Co bilayers at such thickness. Using a one-dimensional model describing a partial domain wall in the antiferromagnet, we explain the coupling in terms of an out-of-plane tilt of the Mn moments at the IrMn/(Co/Pt) interfaces yielding a weak net polarization of the IrMn. Finally, the non-oscillatory decay of the coupling was attributed to the compensated spin structure of the IrMn in the parallel to the interfaces.  相似文献   

13.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

14.
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2 × 1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ± 22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by ? 4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (< 10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.  相似文献   

15.
High-resolution electron energy loss spectroscopy has been used to probe phonon dispersion in quasi-freestanding graphene epitaxially grown on Pt(111). Loss spectra clearly show different dispersing features related to both acoustic and optical phonons. The present results have been compared with graphene systems which strongly interact with the substrate, i.e. the nearly-flat monolayer graphene (MLG)/Ni(111) and the corrugated MLG/Ru(0001). We found that the phonon dispersion of graphene/Pt(111) reproduces well the behavior of pristine graphite. This could be taken as an indication of the negligible interaction between the graphene sheet and the underlying Pt substrate. The softening of out-of-plane modes observed for interacting graphene/metal interfaces does not occur for the nearly-free-standing graphene/Pt(111).  相似文献   

16.
Dynamic instabilities during bulk CO electro-oxidation on poly- and single crystalline rotating Pt electrodes in different electrolytes were investigated experimentally. In sulphuric and perchloric electrolytic media, only bistability is observed. The dependence of the width of the bistable regime on some parameters is discussed. The addition of small amounts of chloride ions induces current oscillations under potentiostatic conditions on polycrystalline Pt, Pt(1 1 0) and Pt(1 0 0) electrodes. Existence range, shape and mean frequency of the mainly irregular kinetic oscillations vary significantly with the crystallographic structure of the electrode surface.  相似文献   

17.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

18.
Low-index plane Pt single crystal electrodes modified by submonolayer deposition of Sn have been tested for ethanol oxidation in acidic media using cyclic voltammetry and chronoamperometry. The enhancement factor for ethanol oxidation depends on both substrate crystallography and Sn coverage. The optimum coverage was found to be around 0.2, 0.25 and 0.52 for (1 0 0), (1 1 1) and (1 1 0), respectively. The enhancement factor was found to decrease in the order: Sn/Pt (1 1 0) > Sn/Pt (1 0 0) > Sn/Pt (1 1 1). On the other hand, the current density obtained at 0.4 V after 15 min of electrolysis was found to decrease in the order: Sn/Pt (1 1 0) > Sn/Pt (1 1 1) > Sn/Pt (1 0 0).  相似文献   

19.
L Meng  R Wu  L Zhang  L Li  S Du  Y Wang  HJ Gao 《J Phys Condens Matter》2012,24(31):314214
Six types of moiré superstructures of graphene on Ir(111) with different orientations (labeled as R0, R14, R19, R23, R26 and R30) are investigated by low-energy electron diffraction, scanning tunneling microscopy and first-principles calculations. The moiré superstructure of R0 graphene has remarkable diffraction spots and deeper corrugation than that of the other superstructures. A high-order commensurate (HOC) method is applied to produce a list of all possible graphene moiré superstructures on Ir(111). Several useful structural data including the precise matrices of the moiré patterns are revealed. Density functional theory based first-principles calculations that include van der Waals interactions reveal the differences of the geometric environment and electronic structures of carbon atoms with respect to the underlying Ir(111) lattices for all the observed moiré patterns. The further calculations of electronic properties at the graphene-Ir interfaces show that the electron transfers for all superstructures are small and of the same order of magnitude, which demonstrates a weak interaction between graphene and the Ir(111) substrate, leading to the coexistence of multi-oriented moiré superstructures.  相似文献   

20.
Deposition and intercalation of Al and Sn on Ni(111) supported graphene is investigated by Auger electron spectroscopy, low energy electron diffraction, and scanning tunneling microscopy. Al intercalates at ~ 200 °C while Sn intercalates at ~ 350 °C, indicating that the intercalation process is element specific. Both Al and Sn alloy with the Ni-substrate at higher annealing temperatures and form ordered alloy surfaces and surface alloys, respectively. Sn forms a (√3 × √3) R30° surface alloy by substituting surface Ni-atoms with Sn and thus the alloy maintains the same good lattice match with graphene as for Ni(111). Both Sn and Al are interacting weakly with graphene and can therefore be used to decouple graphene from the strongly interacting Ni substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号