首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of a Surface X-Ray Diffraction (SXRD) study of Fe nanostructured films deposited on c(2 × 2)-N/Cu(100) at room temperature (RT), with Fe coverage ΘFe = 0.5 ML and ΘFe = 1 ML. The c(2 × 2)-N/Cu(100) surface is an example of self-organised system, that can be used for growth of arrays of metal nano-islands and organic molecules assemblies. We chose two different values of N coverage, ΘN = 0.3 ML and ΘN = 0.5 ML, the second value corresponding to N saturation. We monitored the presence of surface diffraction peaks in hk scans and we performed Crystal Truncation Rods (CTR) analysis with ROD fitting programme. In the case of ΘN = 0.5 ML, i.e. at saturation coverage, the CTR could be fitted with one surface domain with p4gm(2 × 2) symmetry. In the surface cell adopted, N atoms occupy four-fold hollow sites, with Fe (intermixed with Cu) giving rise to a “clock” reconstruction previously observed on iron nitride films obtained by co-deposition and annealing. This result is an indirect confirmation of N surface segregation on top of the Fe films, occurring during the growth at RT. When subsaturation N coverage (ΘN = 0.3 ML) is used as a substrate for Fe deposition, the best results could be obtained with a model where two surface domains are present: the first one corresponds to a surface cell with Fe sitting in four-fold hollow sites on bare Cu areas, with possible interdiffusion in the second lattice. The second domain is assigned to growth of Fe on the N-covered square islands occurring once the bare Cu areas are fully covered. The SXRD analysis on N-covered surface domains shows that the mechanism of reconstruction and of N segregation on top layer is already active at RT for all N-coverage values.  相似文献   

2.
The adsorption of O and CO on Iridium (100) surface with different coverages (Θ = 1.0, 0.5, 0.25 monolayer (ML)) is studied using density functional theory (DFT). The most energetically preferred site of adsorption for O is found to be the bridge site. However, the top site is the preferred one for CO at coverages of 0.25 ML and 0.5 ML. Oxygen adsorbed on the bridge site at 0.25 ML and 0.5 ML coverages causes a row pairing. A missing row reconstruction appears in the case of 0.25 ML coverage. We find that the adsorption of O (CO) on Ir(100) surface causes disruptions of Ir–Ir bonds in the metal, which reduces (increases) the Ir–Ir bond length.  相似文献   

3.
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2 × 1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ± 22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by ? 4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (< 10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.  相似文献   

4.
S.H. Ma  Z.Y. Jiao  Z.X. Yang 《Surface science》2010,604(9-10):817-823
The adsorption of sulfur on Co(0 0 0 1) was studied using density functional theory calculations at coverage from 0.11 ML to 1.0 ML. Calculated results indicate that atomic S favors in hollow sites with bond S–Co dominated at lower coverage and at higher coverage the strong adsorbate S–S interaction leads to the formation of S2 species. It was shown that the adsorption energy generally increases (gets weaker) with the coverage in a near linear fashion for the most stable configurations. In addition, modification of the surface electronic properties has been discussed and some discrepancy are found between our calculations and the findings of O adsorption on Au(1 1 1) and Pt(1 1 1) surfaces.  相似文献   

5.
Density Functional Theory (DFT) calculations indicate that energetically stable structure of clean GaN(0001) surface posses (2 × 1) reconstruction, having every second row of Ga located near plane of N atoms, that gives rise to Ga-related dispersionless surface electronic state, already identified by angle resolved photoelectron spectroscopy (ARPES) measurements [S.S. Dhesi et al. Phys. Rev. B 56 (1997) 10271, L. Plucinski et al. Surf. Sci 507-10 (2002) 223, S. M. Widstrand et al. Surf. Sci. 584 (2005) 169]. The energy reduction in reconstruction proceeds via change of the hybridization of the occupied Ga surface states from sp3 to sp2, transforming the empty states to pz type. It is also shown that the electric subsurface field, modeled in new slab model which allows to simulate electric fields at the semiconductor surfaces [P. Kempisty et al., J. Appl. Phys. 106 (2009) 054901], strongly affects the energy of electronic states of GaN(0001) surfaces. The change of the field may shift the energy of surface states of bare and hydrogen covered GaN(0001) surface, by several eV with respect to the band states. The phenomenon, denoted as Surface States Stark Effect (SSSE), explains various band bending values, measured at differently doped n-type GaN(0001) surfaces. It is shown also that, for the adsorbate density up to one H atom for each Ga surface atom i.e. 1 monolayer coverage (1 ML), the hydrogen adatoms are located at the on-top positions, i.e. directly above Ga atoms. For these adsorbate densities, the H-related quantum surface state is located slightly below the valence band maximum (VBM) in the case of p-type GaN surface. For n-type GaN, the H-related surface state is located deeply in the valence band, about 2 eV below VBM. For higher, 1.25 ML hydrogen coverage, the two H adatoms create either surface attached H2 ad-molecule (energetically stable) or triple bridge configuration is created (metastable). The H2 ad-molecule is weekly attached to the surface, having the desorption energy barrier equal to 0.16 eV. For 1.25 ML coverage the DFT results were obtained for p-type GaN only. They show that in the ad-molecule case, a new surface electronic state arises which is located about 6.7 eV below VBM. In the case of the bridge configuration, the bridge related surface state is located closely to the conduction band minimum (CBM).  相似文献   

6.
The adsorption of sulphur on clean reconstructed Au{1 1 0}-(1 × 2) surface was studied using density functional theory (DFT) and quantitative low energy electron diffraction (LEED) calculations. The results show that the sulphur atoms form a (4 × 2) ordered structure which preserves the missing row reconstruction of the clean surface. The sulphur atom is found to adsorb on threefold hollow sites, on the {1 1 1} microfacets that border the trenches of the missing rows.  相似文献   

7.
Using the experimental data obtained mainly with the scanning tunneling microscopy observations, density functional theory calculations have been applied to examine an atomic structure of the Ag/Si(100)-c(6 × 2) reconstruction. A set of structural models has been proposed having a similar Si(100) substrate reconstruction which incorporates rows of top Si atom dimers and troughs in between the rows. Stability of about twenty models with various Ag coverage ranging from 1/6 to 1 ML has been tested, that allows reducing the number of plausible models to four. Two of these four models have been attributed to the “regular” intrinsic Ag/Si(100)-c(6 × 2) reconstruction, while the other two to its defect-induced modification. The latter is observed in the local areas near defects and domain boundaries and exhibits 3 × 2 periodicity. Comparing the results of calculations with the experimental STM images, it has been concluded that while the Si(100) substrate reconstruction is solid, the Ag subsystem is flexible due to the presence of the lightly bonded mobile Ag atoms.  相似文献   

8.
The adsorption of 0.25, 0.5 and 1 monolayer (ML) of the transition metal Ni on the metal substrate Al(1 1 0) was studied using first-principles calculations at the level of density functional theory. The metal–metal system was analyzed with the generalized gradient approximation. Four stable atomic configurations were considered, and the optimized geometries and adsorption energies of different Ni adsorption sites on the Al(1 1 0) surface at selected levels of coverage were calculated and compared. The four-fold hollow site was determined to be the most stable adsorption site with adsorption energy of 5.101 eV at 0.25 ML, 3.874 eV at 0.5 ML and 3.665 eV at 1 ML. The adsorption energies of the four sites slightly decreased as the Ni coverage increased. Work function analysis showed that when Ni is adsorbed on the Al(1 1 0) surface, the work function decreased as the coverage increased due to depolarization. The Mulliken population and density of states were calculated to determine the charge distribution of the adsorption site, confirming that a chemisorption interaction exists between the adsorbed Ni atom and Al(1 1 0) surface atoms.  相似文献   

9.
The electronic passivation of a Ge(100) surface, via the chemisorption of H2O at room temperature (RT), and the temperature dependence of H2O coverage were investigated using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). With a saturation H2O dose at RT, a highly-ordered structure, due to the dissociative chemisorption of H2O, was observed on a Ge(100) surface with a coverage of 0.85 monolayers (ML). Annealing the room temperature H2O-dosed Ge surface to 175 °C decreased the coverage of H2O to 0.6 ML. Further annealing at 250 °C decreased the coverage of H2O sites to 0.15 ML, and the surface reconstruction of Ge dimers was observed over much of the surface. Annealing above 300 °C induced Ge suboxide structures, similar to the oxygen-dosed Ge surface. STS measurements confirmed that the surface dangling bond states near Fermi energy are removed by the H2O chemisorption because the dangling bonds of Ge atoms are terminated by ―OH and ―H. The H2O pre-dose at room temperature provides a template for the ultrathin passivation of Ge(100) surface via atomic layer deposition (ALD) at RT, since near monolayer nucleation can be obtained with a 1/2 hydroxylated and 1/2 hydrogenated Ge surface.  相似文献   

10.
The local structure of the methoxy species on Cu(110) has been investigated experimentally using chemical-state specific O 1s scanned-energy mode photoelectron diffraction (PhD), and also by density functional theory (DFT) calculations. The PhD data show a clear preference for adsorption with the O bonding atoms in short-bridge sites, though the best fit of multiple-scattering simulations to the experimental data is achieved with two slightly different short-bridge geometries. The DFT calculations also show that not only are the short-bridge sites energetically favoured in isolation, but that coordination to pairs of Cu adatoms has a similar energy. A structure consistent with both the PhD data and the DFT calculations is proposed for the previously-observed (5 × 2)pg ordered phase, based on methoxy species in short-bridge sites on pairs of Cu adatoms and on the underlying surface. Simulated scanning tunnelling microscopy images agree well with those observed experimentally, while the model is also shown to be consistent with the qualitative behaviour seen in early X-ray photoelectron diffraction (XPD) forward-scattering experiments.  相似文献   

11.
Using the pseudopotential method and the local density approximation of density functional theory we have investigated the stability, atomic geometry, and electronic states for low-coverage Ca adsorbates on the Si(001) surface within the (2 × n) reconstructions with n = 2, 3, 4, 5. Our total energy calculations suggest that the (2 × 4) phase represents the most energetically stable structure with the Ca coverage of 0.375 ML. Within this structural model, each Ca atom is found to form a bridge with the inner two Si–Si dimers. The inner Si–Si dimers become elongated and symmetric (untilted). The band structure calculation indicates that the system is semiconducting with a small band gap. Significant amount of charge transfer from the Ca atoms to neighbouring Si atoms has been concluded by analysing the electronic charge density and simulation of scanning tunnelling microscopy images. The highest occupied and lowest unoccupied electronic states are found to arise from the inner and outer Si–Si dimer components, respectively.  相似文献   

12.
We present a scanning tunneling microscopy (STM) study of the reactivity to oxygen of the O/Cu(110) surface nanostructured with alternating oxidized and clean Cu stripes leading to novel nanostructuring by troughs made of missing top-most Cu atoms. The copper atoms extracted from these troughs are participating to the added-row reconstruction of the surface. The oxidation of the nanostructured surface proceeds by enlargement of the oxidized stripes and by oxidation of the troughs until the surface is fully covered by oxygen. At saturation, the trough arrangement, templated by the oxygen-free stripes, led to a novel nanostructure of the O/Cu(110) surface made of the (2 × 1) phase only.A limited influence of the step density was found as the nanostructuration blocks almost all the primary sources of copper atoms at the step edges. In this case, the troughs became the spare source feeding the reconstruction. Careful analysis of the trough distribution in the vicinity of step edges and on terraces shows clear indication of an anisotropic diffusion of the copper adatoms at the surface.  相似文献   

13.
C. Fan  G.P. Lopinski 《Surface science》2010,604(11-12):996-1001
The gas phase anhydrous reaction of glycidoxypropyldimethylethoxysilane (GPDMES) with a model hydroxylated surface has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM). Water dissociation on the clean reconstructed (2 × 1)-Si(100) surface was used to create an atomically flat surface with ~ 0.5 ML of hydroxyl groups. Exposure of this surface to GPDMES at room temperature under vacuum was found to lead to formation of covalent Si–O–Si bonds although high exposures (6 × 108 L) were required for saturation. STM images at the early stages of reaction indicate that the reaction occurs randomly on the surface with no apparent clustering. The STM images together with semi-empirical (AM1) calculations provide evidence for hydrogen bonding interactions between the oxygen atoms in the molecule and surface hydroxyl groups at low coverage.  相似文献   

14.
The structural and chemical characterization of Rh, Mo and Rh–Mo nanosized clusters formed by physical vapor deposition on TiO2 single crystal was performed by Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS) and Reflection Absorption Infrared Spectroscopy (RAIRS), applying CO as test molecule. On a slightly reduced titania surface 2D-like growth of Rh was revealed at 300 K up to 0.23 ML coverage by AES and CO-desorption experiments. For CO-saturated Rh particles TDS showed molecular CO desorption in a broad temperature range with Tp = 400, 440, 490 and 540 K (α-states), the latter state appearing only on the smallest Rh particles. The population of γ-state (Tp = 780–820 K) originating from the recombination of C and O atoms on the support began at ΘRh = 0.23ML and was maximized at around 1–2 ML Rh coverage, corresponding to 30% dissociation of CO. A possible dissociation precursor on Rh particles is identified as linearly bonded CO on step sites characterized by ν(C–O) of 2017 cm? 1. Deliberation of CO2 could not be detected between 170 and 900 K, showing the absence of disproportionation reaction. Instead of oxidizing CO molecules, oxygen atoms stemming from the dissociation of CO attached to the reduced centers of titania, indicating the role of adsorption sites at the perimeter of Rh particles in the decomposition process. 2 ML of predeposited Mo enhanced markedly the dispersion of Rh particles as a result of strong Rh–Mo interaction, but it slightly reduced the molecular α-CO desorption possibly due to enhanced dissociation. The formation of γ-CO was suppressed considerably through elimination of adsorption centers by Mo on the TiO2 substrate. The reactivity of Rh layers deposited on Mo-covered surface towards CO was reduced after repeated annealing to 600 K due to partial encapsulation of Rh by titania, manifesting in the suppression of the more strongly bonded α-state. Mo-deposits (up to 0.5ML) on Rh particles decreased the saturation coverage of α-CO through a site-blocking mechanism without detectable influence on the binding energy of CO to Rh, indicating Mo island formation. The carbon arising from the decomposition of CO dissolved in the Mo-containing particles formed a solid solution stable even at 900 K, suggesting a possible role of molybdenum carbide regarding the enhanced catalytic activity of Rh clusters.  相似文献   

15.
The growth of TiO2 anatase films on Nb‐doped SrTiO3(001) molecular beam epitaxy has been studied in-situ by scanning tunneling microscopy. We show that the initial growth follows the Stranski–Krastanov mode, where islands form on top of a wetting layer consisting of two monolayers (ML) of TiO2. The epitaxial islands subsequently nucleate and coalesce into large commonly oriented crystallites. The reconstruction observed by reflection high-energy electron diffraction (RHEED) is shown to result from the coexistence of individual (4 × 1) and (1 × 4) reconstructions present on different crystallite surfaces. The anatase grows in units of bilayers, resulting in a step height of 2 ML (~ 0.5 nm). This result explains the fact that the measured period of the RHEED specular-beam intensity oscillations corresponds to the time required for deposition of 2 ML. Ar ion sputtering and UHV annealing results in a transformation to coexisting (4 × 1) and (1 × 4) reconstructed terraces on individual crystallites, as commonly observed by ex-situ STM studies.  相似文献   

16.
The mechanoluminescence (ML) of γ-irradiated coloured powder of (KNa)Br:Ce(0.1–10 mol%) phosphor is reported in this paper. The samples are prepared by wet chemical method. The ML intensities are found to be dependent on concentrations of Ce3+ ion and γ-rays radiation dose. The variation of peak ML intensity of (KNa)Br:Ce(0.5 mol%) with different γ-rays dose is found as linear up to 2.5 kGy high dose from 0.08 kGy, whereas for the KBr:Ce(0.5 mol%) and NaBr:Ce(0.5 mol%) samples the ML intensities increases sublinearly. The prepared sample shows minimum fading in ML intensity. The ML characterisation shows the good linearity, less fading and simple ML glow curve structure, thus the prepared material may be useful for radiation dosimetry.  相似文献   

17.
Chlorine adsorption on Ru(0001) surface has been studied by a combined density functional theory (DFT) and quantitative low energy electron diffraction (LEED) approach. The (√3 × √3)R30°-Cl phase with ΘCl = 1/3 ML and chlorine sitting in fcc sites has been identified by DFT calculations as the most stable chlorine adsorbate structure on Ru(0001) with an adsorption energy of ? 220 kJ/mol. The atomic geometry of (√3 × √3)R30°-Cl was determined by quantitative LEED. The achieved agreement between experimental and simulated LEED data is quantified by a Pendry factor of rP = 0.19 for a fcc adsorption site with a Cl-Ru bond length of 2.52 Å. At chlorine coverages beyond 1/3 ML LEED reveals diffuse diffraction rings, indicating a continuous compression of the hexagonal Cl overlayer with a preferred average Cl–Cl distance of 4.7 Å in the (√3 × √3)R30°-Cl, ΘCl = 1/3 ML phase towards 3.9 Å at saturation coverage of 0.48 ML.  相似文献   

18.
The atomic arrangement of submonolayer Bi films on Rh(111) surface was examined using low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). With low coverage, the LEED patterns showed incommensurate (IC) spots. The unit cell of IC was close to c(2 × 4) and had twofold symmetry. As the coverage increased, the unit cell shrank continuously along the [1¯10] direction, and the commensurate c(2 × 4) was formed at a coverage of 0.5 ML. At the coverage above 0.5 ML, two different structures of c(2 × 4) and (4 × 4) were observed by STM. When the surface is fully saturated by monolayer Bi atoms, Bi atoms formed the uniform (4 × 4) structure with sixfold symmetry. This is due to a strong Bi–Rh attractive interaction resulting in the two-dimensional localization of Bi adsorbates on the surface. As a result, a symmetrical transition of Bi films from twofold to sixfold symmetry occurred on Rh(111).  相似文献   

19.
Tin (Sn) induced (1 × 2) reconstructions on GaAs(100) and InAs(100) substrates have been studied by low energy electron diffraction (LEED), photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and ab initio calculations. The comparison of measured and calculated STM images and surface core-level shifts shows that these surfaces can be well described with the energetically stable building blocks that consist of Sn–III dimers. Furthermore, a new Sn-induced (1 × 4) reconstruction was found. In this reconstruction the occupied dangling bonds are closer to each other than in the more symmetric (1 × 2) reconstruction, and it is shown that the (1 × 4) reconstruction is stabilized as the adatom size increases.  相似文献   

20.
Dongyoo Kim  Jisang Hong 《Surface science》2012,606(23-24):1960-1964
Using the full potential linearized augmented plane wave (FLAPW) method, we have investigated the thickness dependent magnetic properties of rare earth free exchange spring magnet FeCo/FePt(001). The FeCo adlayer thickness is increased from one monolayer (ML) to four ML coverage. It is observed that the FeCo adlayers and Fe atoms in FePt substrate show almost half metallic behavior, while an ordinary metallic feature is found in Pt atoms. The average magnetization increases with FeCo thickness and the estimated maximum energy product reaches 66 MGOe in FeCo(4 ML)/FePt(001). A giant perpendicular magnetocrystalline anisotropy (MCA) energy of 18.20 meV/cell is found in pure FePt(001) and it becomes 17.35 meV/cell even in FeCo(4 ML)/FePt(001). In addition, we find very large coercivity field in FeCo/FePt(001) systems. For instance, the calculated maximum coercivity field in FeCo(4 ML)/FePt(001) is about 188 kOe. Both energy product and coercivity field calculations may imply that the FeCo/FePt can be utilized for potential rare earth free exchange spring magnet material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号