首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies of the dissociative adsorption of methane on clean Ni(111), Ni(100), Ni(110), and sulfur-modified Ni(100), as well as ethane, propane, and n-butane on Ni(100) have been carried out under the high incident flux conditions of 1.00 Torr methane, 0.10 Torr ethane, 0.01 Torr propane, and 0.001 Torr n-butane, respectively. It has been found that the activation energies for these processes range from 3.1±1.0 to 13.3±1.5 kcal mol–1. A comparison with the results of corresponding molecular beam studies suggests that the effects of vibrational energy on sticking probabilities must be accounted for and the sticking probabilities of molecules with very low normal kinetic energies must be accurately known when attempting to model high pressure processes using molecular beam techniques. While dissociation of ethane, propane, and n-butane on Ni(100) is believed to proceed primarily via a trapped molecular precursor, the results on sulfur-modified Ni(100) surface indicate that the direct channel to methane dissociation likely dominates and the contribution from the trapped molecular precursor mechanism is likely relatively small, with the sulfur atoms poisoning this reaction by a simple site blocking mechanism.  相似文献   

2.
The early stages of methane, ethane and propane conversion were studied by in situ 1H and 13C MAS NMR techniques over fully exchanged Zn2+/MFI catalyst obtained by the reaction with zinc vapour. The in situ techniques revealed strong interaction of alkanes with Zn2+ cations evidenced by significant shift of the corresponding NMR lines. Besides that, the formation of methyl zinc, ethyl zinc and n-propyl zinc species along with bridging and silanol surface OH-groups was detected already at the ambient temperature. These results pointed to dissociative adsorption of alkanes over (ZO)–Zn2+–(OZ) and (ZO)–Zn2+–(OSi) active sites of the catalyst. The dissociative adsorption was shown to be a dead-end surface reaction in the case of methane starting reactant, while in the case of ethane and propane, it appeared to be responsible for the initiation of the catalytic cycle leading to alkenes and dihydrogen formation and regeneration of zinc containing catalytic sites.  相似文献   

3.
We use a periodic density functional theory (DFT) code to study the adsorption of CH3 and H, as well as their co-adsorption on a Ni(111) surface with and without Ni ad-atom, at a surface coverage of 0.25 monolayer (ML). We systematically investigate the site preference for CH3 and H. Then we combine CH3 and H in many co-adsorbed configurations on both surfaces. Methyl and hydrogen adsorption on a flat Ni(111) surface favours the hollow site over the top site. The presence of a Ni ad-atom stabilizes the adsorption of CH3 better than a flat surface, while hydrogen is more stable on a flat Ni(111) surface. When H and CH3 are co-adsorbed at nearest Ni neighbours on the (111) surface, their interaction is always repulsive. However, the dissociative adsorption of CH4 is stabilised when the fragments are infinitely separated. For the co-adsorbed fragments CH3 and H, in the presence of an ad-atom, the repulsive interaction is lowered, so that the dissociative form of CH4 is locally stable.  相似文献   

4.
Studies of benzene (C6H6 and C6D6) adsorption have been performed by high resolution electron energy loss spectroscopy (HRELS) and LEED experiments on nickel (100) and (111) single crystal faces at room temperature. Chemisorption induces ordered structures, c(4 × 4) on Ni(100) and (2√3 × 2√3)R30° on Ni(111), and typical energy loss spectra with 4 loss peaks accurately identified with the strongest infrared vibration bands of the gazeous molecules. Benzene chemisorption preserves the aromatic character of the molecule and involves respectively 8 nickel surface atoms on the (100) face and 12 on the (111) face by adsorbed molecule. The interaction takes place via the π electrons of the ring. Significant shifts of the CHτ bending and CH stretching vibrations show a weakening of the CH bonds due to the formation of the chemisorption bond and a coupling of H atoms with the nickel substrate.  相似文献   

5.
H_2在Ni,Pd与Cu表面的解离吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
孙强  谢建军  张涛 《物理学报》1995,44(11):1805-1813
用EAM方法(embeded-atommethod)研究H_2在Ni,Pd与Cu的(100),(110)与(111)面上的解离吸附.首先通过拟合单个H原子在Ni,Pd与Cu不同表面上的吸附能和吸附键长,得到H与这些金属表面相互作用的EAM势,然后计算H_2在这些表面上以不同方式进行解离吸附时的活化势垒E_a,吸附热q_(ad)与吸附键长R.并给出H_2在(110)面上解离吸附的势能曲线.计算结果表明H_2的解离吸附与衬底种类、衬底表面取向及解离方式有关.H_2在Ni表面上解离时活化势垒很低,而在Cu表面解 关键词:  相似文献   

6.
S. Funk 《Applied Surface Science》2007,253(11):4860-4865
As a screening of the chemical activity of silica [SiO2/Si(1 0 0)], which is one of the most often used supports for nanostructures, thermal desorption spectroscopy data have been gathered for a variety of gases such as n-nonane, n-hexane, n-butane, iso-butane, ethane, CO2, CO, O2, and H/H2. Whereas, the alkanes with chain lengths larger than three adsorb with large binding energies (Ed = 50-70 kJ/mol), the activity towards the other probe molecules is negligible (<24 kJ/mol) down to adsorption temperatures of 95 K. The adsorption of n- and iso-butane has additionally been studied by molecular beam scattering and follows standard precursor mediated adsorption dynamics.  相似文献   

7.
Elastic and direct-inelastic scattering as well as dissociative adsorption and associative desorption of H2 and D2 on Ni(110) and Ni(111) surfaces were studied by molecular beam techniques. Inelastic scattering at the molecular potential is dominated by phonon interactions. With Ni(110), dissociative adsorption occurs with nearly unity sticking probability s0, irrespective of surface temperature Ts and mean kinetic energy normal to the surface 〈 E 〉. The desorbing molecules exhibit a cos θe angular distribution indicating full thermal accommodation of their translation energy. With Ni(111), on the other hand, s0 is only about 0.05 if both the gas and the surface are at room temperature. s0 is again independent of Ts, but increases continuously with 〈 E⊥ 〉 up to a value of ~0.4 forE⊥ 〉 = 0.12 eV. The cos5θe angular distribution of desorbing molecules indicates that in this case they carry off excess translational energy. The results are qualitatively rationalized in terms of a two-dimensional potential diagram with an activation barrier in the entrance channel. While the height of this barrier seems to be negligible for Ni(110), it is about 0.1 eV for Ni(111) and can be overcome through high enough translational energy by direct collision. The results show no evidence for intermediate trapping in a molecular “precursor” state on the clean surfaces, but this effect may play a role at finite coverages.  相似文献   

8.
E. Kadossov 《Surface science》2007,601(16):3421-3425
The adsorption of n-butane and iso-butane on HOPG (highly-oriented pyrolitic graphite) has been studied by molecular beam scattering. The initial adsorption probability, S0, decreases with impact energy, Ei, and is independent of surface temperature, Ts, i.e., molecular adsorption is present. The adsorption probability, S, increases with coverage, Θ, which is most distinct at large Ei and low Ts. Thus, precursor mediated adsorption is concluded. Whereas S0 of the linear alkane is larger than the one of the branched alkane, consistent with their molecular structure, the shapes of S(Θ) curves are approximately identical. The rotational excitation of the molecules appears to affect S0 for n-butane but not for iso-butane. Monte Carlo simulations (MCS) have been conducted to extract dynamics parameters from the S(Θ) curves.  相似文献   

9.
The temperature dependence of the rate of dissociative hydrogen adsorption on Ni(111) and Ni(110) surfaces was determined by monitoring the rate of HD production from a mixed H2 and D2 molecular beam striking the sample surfaces. No anomaly was found in the vicinity of the Curie point Tc if the surfaces were rigorously kept clean. A step-like increase of the rate was, however, observed near Tc if the surfaces were slightly contaminated with carbon which dissolves in the bulk in this temperature range and segregates back upon cooling. The results are discussed in view of the present knowledge of the magnetic properties of nickel surfaces.  相似文献   

10.
The Crystal Field Surface Orbital-Bond Energy Bond Order (CFSO-BEBO) model of chemisorption is applied to the interaction of carbon monoxide, oxygen and carbon dioxide with a (111) platinum surface; and the interaction of oxygen with a (111) nickel surface. No activation energy for molecular adsorption of carbon monoxide on platinum is predicted; however a large activation energy for dissociative chemisorption is calculated. The molecular state has a binding energy of approximately 28 kcal/mole, and vibrational stretching frequencies of 1935 and 1975 cm?1 are calculated by combining the CFSO-BEBO model with Badger's Rule. The adsorption of oxygen on (111) platinum and (111) nickel are predicted to be different in the following respects: (1) There is an activation energy of 2.1–4.5 kcal/mole on platinum, whereas adsorption on nickel is unactivated; and (2) The dissociative heat of chemisorption on platinum is 58–68 kcal/mole, whereas on nickel it is substantially larger, 112–116 kcal/mole. The adsorption of carbon dioxide on (111) platinum is predicted to be not only highly activated but also endothermic. All of the calculated results are essentially in quantitative agreement with available experimental data.  相似文献   

11.
Time-dependent X-ray photoelectron spectroscopy is used to study the kinetics and dynamics of simple surface reactions. Combining high-resolution core level spectroscopy with a supersonic molecular beam in one experimental setup, processes such as the dissociative adsorption of methane on both Pt(111) and Ni(111), the coadsorption of water and CO on Pt(111), and the oxidation of CO on Pt(111) have been studied. In the case of methane, the observed vibrational fine structure in C 1s spectra is used to identify the adsorbed species (CH3) and further thermal dehydrogenation steps. While simple dehydrogenation via CH is observed on Pt(111), a C–C coupling reaction to acetylene is found on Ni(111). In the coadsorbate phase, CO is found to be able to replace predosed water from the bilayer into multilayers. Water, in turn, leads to a site change of the CO molecules, which are preferably adsorbed at bridge sites in the presence of water, as opposed to on-top adsorption on clean Pt(111). For the truly bimolecular surface reaction, the CO oxidation on Pt(111), the ability of the molecular beam to create a relatively high CO pressure was found essential to study the kinetics of the basic step (CO+OCO2) without influence of adsorption or diffusion rate. An activation energy of 0.53 eV and a preexponential factor of 5×106 s-1 are found. PACS 68.43.Mn; 79.60.Dp; 82.20.Pm  相似文献   

12.
The adsorption of single hydrogen atoms, investigated by means of cluster calculations, has been compared with the adsorption of hydrogen monolayers on periodic crystals (paper I). From the similarity of the adsorption energy curves we conclude that the (direct and indirect) interactions between adsorbed hydrogen atoms are relatively small up to monolayer coverage. For adsorption on different sites of ideal low index surfaces the stability decreases in the order Atop > Bridge > Centred. For Atop adsorption it increases with a decreasing number of nearest neighbours to the nickel atom in the NiH “surface molecule”, thus leading to especially strong adsorption sites at the edges of a stepped surface and to low stability in the notches. In general, we find that the NinH “surface molecule” with n = 1, 2, 3 or 4 determines the equilibrium positions for H adsorption; the inclusion of one shell of neighbours to the nickel atoms is sufficient to explain the differences in adsorption energy. The Extended Hückel method is not well suited to study dissociative chemisorption of H2, although some qualitative trends are correct.  相似文献   

13.
The sooting behaviour of binary fuel mixtures was evaluated both experimentally and through computer simulations. The soot volume fraction in laminar diffusion flames of mixtures of ethylene/propane, methane/ethylene, methane/propane, methane/ethane, methane/butane, ethane/propane and ethane/ethylene fuels was measured using 2-dimensional line of sight attenuation. A synergistic effect was observed for the ethylene/propane, methane/ethylene, methane/ethane and ethane/ethylene mixtures. The synergistic effect translated into a higher soot concentration for a mixture fraction than could be yielded by the added contribution of both pure fuels. Such an effect was not observed for the methane/propane, methane/butane and ethane/propane mixtures. Through experiments in which the flame temperature was kept constant, it was determined that the synergistic effect in the methane/ethylene mixture is very temperature dependent whereas, that in the ethylene/propane mixture is not. This phenomenon was further studied through the modeling of the ethylene/propane mixture. Numerical simulations were carried out using two different soot models. The simulations confirmed the presence of a synergistic effect. It was found that the effect could be directly correlated to a synergistic effect in the concentration of n-C4H5 and n-C4H3, which could be traced back to an interaction between ethylene and methyl radical species. These results yield further insight into the pathways to soot formation and highlight the importance of further analyzing binary fuel mixtures as a means of understanding soot formation in practical devices using industrial fuels.  相似文献   

14.
The thermally controlled synthesis of graphene from propylene molecules on the Ni(111) surface in ultrahigh vacuum is studied by scanning tunneling microscopy and density functional theory. It is established that the adsorption of propylene on Ni(111) atomic terraces at room temperature results in the dehydration of propylene molecules with the formation of single-atomic carbon chains and in the complete dissociation of propylene at the edges of atomic steps with the subsequent diffusion of carbon atoms below the surface. The annealing of such a sample at 500°С leads to the formation of multilayer graphene islands both from surface atomic chains and by the segregation of carbon atoms collected in the upper nickel atomic layers. The process of formation of an epitaxial graphene monolayer until the complete filling of the nickel surface is controllably observed. Atomic defects seen on the graphene surface are interpreted as individual nickel atoms incorporated into graphene mono- or bivacancies.  相似文献   

15.
Photoelectron spectroscopic studies of the oxidation of Ni(111), Ni(100) and Ni(110) surfaces show that the oxidation process proceeds at 295 and 485 K in two distinct steps: a fast dissociative chemisorption of oxygen followed by oxide nucleation and lateral oxide growth to a limiting coverage of 3 NiO layers. The oxygen concentration in the 295 K saturated oxygen layer on Ni(111) was confirmed by 16O(d,p) 17O nuclear microanalysis. At 295 and 485 K the oxide growth rates are in the order Ni(110) > Ni(111) > Ni(100). At 77 K the oxygen uptake proceeds at the same rate on all three surfaces and shows a continually decreasing sticking coefficient to saturation at ~2.1 layers (based upon NiO). An O 1sb.e. = 529.7 eV is associated with NiO, and O ls b.e.'s of ~531.5 and 531.3 eV can be associated, respectively, with defect oxide (Ni2O3) or (in the presence of H2O) with an NiO(H) species. The binding energies (Ni 2p, O 1s) of this NiO(H) species are similar to those for Ni(OH)2. Defect oxides are produced by oxidation at 485 K, or by oxidation of damaged films (e.g. from Ar+ sputtering) and evaporated films. Wet oxidation (or exposure to air) of clean nickel surfaces and oxides, and exposure of thick oxide to hydrogen at high temperature results in an O 1s b.e. ~531.3 eV species. Nuclear microanalysis 2H(3He,p) 4He indicates the presence of protonated species in the latter samples. Oxidation at 77 K yields O 1s b.e.'s of 529.7 and ~531 eV; the nature of the high b.e. species is not known. Both clean and oxidised nickel surfaces show a low reactivity towards H2O; clean nickel surfaces are ~103 times less reactive to H2O than to oxygen.  相似文献   

16.
王睿  丁丁  魏伟  崔义 《化学物理学报》2019,32(6):753-759
本文利用近常压X射线光电子能谱和近常压扫描隧道显微镜研究了在超高真空(UHV)和近常压条件下,被羰基镍污染的CO气体在Cu(111)表面的吸附过程. 通过控制被污染CO的气体压力,可以在Cu(111)表面上形成Ni-Cu双金属催化剂. 此外,本文探索了CO在所形成的Ni-Cu双金属表面上的吸附和解离过程,并报道了几种CO的高压吸附相结构.  相似文献   

17.
Overlayers formed by the adsorption of Ni(CO)4 in CO on the Ni(111) surface at 100 K were characterized using high resolution electron energy loss spectroscopy and thermal desorption spectroscopy. At temperatures below 135 K, molecular nickel carbonyl adsorbs on the CO saturated Ni(111) surface as suggested by several observations. Vibrational transitions characteristic of molecular Ni(CO)4 are dominant. The energy dependence of both the elastic and inelastic electron scattering cross sections are dramatically altered by Ni(CO)4 adsorption. All of the mass spectrometer ionization fragments typical of molecular Ni(CO)4 are observed in the narrow thermal desorption peak at 150 K. The inelastic scattering cross sections for both adsorbed nickel carbonyl and adsorbed CO on the Ni(111) surface suggest that a nonresonant dipole scattering mechanism is dominant.  相似文献   

18.
In a continuation of the study of the mobility of fluids adsorbed in nanoporous materials, molecular dynamics simulations are used to investigate the behaviour of polyatomic ethane molecules adsorbed in AlPO4-5. The current work is based on the use of the united atom approach as a better model than the single-centre ethane used to date. Ethane molecules are modelled as rigid diatoms, and as a result the molecules have more degrees of freedom in the form of the rotational components that are absent in the single-centre ethane model. This represents a more sophisticated model for ethane and is used in the simulations to test earlier findings. Simulations with binary mixtures of methane and ethane also have been conducted with three mixture compositions. The transition from ordinary diffusion to single-file motion for a finite residence time is found to occur at a methyl group diameter of 4.75 Å. This is identical to the ethane diameter in the earlier study. Thus, only the minimum dimension determines the transition size. Also it is shown that the diatomic molecules undergo free rotation within the channel even when they are in the single-file mode of motion. In the case of binary mixtures, the methane molecules still undergo ordinary diffusion. Ethane molecules exhibit single-file motion at a methyl group diameter of 4.75 Å. The diffusion coefficient of methane decreases with increasing ethane size, while the trends in the single-file mobility of ethane as a function of methyl group diameter are nonlinear.  相似文献   

19.
The mechanism of H2 dissociative adsorption on Mn-modified Ni(111) surface is investigated and explained using spin-polarized density functional theory (DFT). Potential energy surface (PES) is used to determine the efficient reaction pathway of H2 on the surface. The dissociative adsorption of H2 in the hollow sites with its center-of-mass (CM) positioned on top of Ni atom has low activation barrier. This is lower compared if its CM is on top of the Mn atom. The difference in the reactivity of H2 with Ni and Mn as the CM is corroborated by the positions of the bonding and antibonding orbitals of H2 as it approaches the surface which is verified from local density of states (LDOS). The greater density of states in the region around the Fermi level of the dzz, dxz, and dyz orbitals of the Ni atom explains the low activation barrier obtained for the dissociation of H2 on top of the Ni atom in the Mn-modified Ni(111) surface.  相似文献   

20.
We investigate and discuss how surface corrugation affects the molecular rotational dependence of H2 dissociative adsorption dynamics on Cu(100) by performing six-dimensional (6D) quantum dynamics calculations. We calculate the dissociative adsorption probability as a function of the initial rotational state J and the normal energy Enorm of incident molecules, and compare with the dissociative adsorption results obtained by four-dimensional (4D) quantum dynamics calculations where the surface is treated as flat. In our calculation, for the case of normal incidence, the increase in dissociative adsorption probability with increasing Enorm and the non-monotonic behavior of dissociative adsorption probability with respect to J are suppressed on a corrugated surface as compared to that on a flat surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号