首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Density-functional calculations of molecular nitric oxide (NO) on defective (La,Sr)O (001) surfaces of (La,Sr)FeO3 ? δ using slab models are performed to elucidate the oxygen vacancy formation problem on the LaO (001) surface of LaFeO3 ? δ.From the estimation of the NO adsorption energy, NO adsorption is found on (La,Sr)O surfaces of (La0.83,Sr0.17)FeO3 ? δ with δ = 0 or 0.25.The absolute value of the NO adsorption energy shows a remarkable increase at oxygen vacancies in the top surface layer, where the nitrogen atoms of the adsorbed molecules are embedded in the first (La,Sr)O layer, because a bond with Fe in the second FeO2 layer is formed.Our data shows that Sr doping promotes formation of oxygen vacancies, which keep the NO adsorption ability high.Thus, we conclude that if Sr doping increases the number of oxygen vacancy sites by a charge compensation effect, NO adsorption on LaFeO3 is enhanced, which provides an explanation for several experimental observations.  相似文献   

2.
The electro-optical properties, including: energy density of states function, dielectric function, refraction coefficient, extinction coefficient, band structure, energy gap and optical conductance of LiMoO3(IO3) structure with single-crystal data are computed and discussed in this paper. The LDA + U and generalized gradient approximations (GGA) with the full-potential linearized augmented plane wave method (FP-LAPW) in the framework of density functional theory (DFT) are used to compute the energy gap and other properties of this structure by considering the orbital dependent potential for coupled d orbital brought from experimental results and the U is applied to the Mo d-manifold. The results of energy gap are 2.1 eV and 1.5 eV for LDA + U and for GGA methods, respectively, which LDA + U method result is very close to experimental results.  相似文献   

3.
B.W. Chang  J.P. Chou  M.F. Luo 《Surface science》2011,605(11-12):1122-1128
With density-functional calculations we have investigated adsorption and diffusion of an Au atom and an Au2 dimer on a θ-Al2O3(001) surface. The surface structure of θ-Al2O3(001) has an armchair-like configuration containing flat and trench areas and the Aun (n = 1 or 2) cluster prefers to adsorb on the flat area. A single Au atom adsorbs on an O–Al bridge site with adsorption energy 0.35 eV, whereas an Au2 dimer bonds to the oxide with adsorption energy 0.78 eV, with one Au coordinated singly to a surface O. Formation of Au2 from Au1 is favored, with a negligible energy barrier. The calculated energy barriers for diffusion indicate that an Au atom diffuses more rapidly than an Au2 dimer but both prefer to diffuse anisotropically, along the flat area of the θ-Al2O3(001) surface.  相似文献   

4.
Adsorption properties of 4-bromostyrene (Br–Sty) on the Si(001)-(1 × 2) surface are investigated by ab initio calculation based on density functional theory (DFT). For the adsorption of Br–Sty molecule on the Si(001)-(1 × 2) surface, we have assumed two possible cases within: (i) binding on the partially H-terminated surface and (ii) binding on the clean surface. For the first case, we have estimated two different binding sides: (i) Bromine-terminated bindings and (ii) Carbon-terminated binding. The adsorption energies of Br-terminated and C-terminated binding were found as 0.36 eV and 3.76 eV, respectively. In the same manner, we have also assumed two possible binding sides for the clean surface: (i) Br-terminated binding and (ii) ring-shaped binding. We have found adsorption energies for Br-terminated and ring-shaped binding as 0.14 eV and 1.10 eV on the clean surface, respectively. Moreover, the nudged elastic band method (NEB) was used to reveal the adsorption pathway of these binding models. These results serve to understand the possibility of the adsorption of Br–Sty molecules onto different kind of silicon surfaces into different reaction conditions.  相似文献   

5.
A recyclable heterogeneous catalyst has been successfully developed for application in a Fenton-type advanced oxidation process without adding external H2O2. LaFeO3 was prepared from Fe(NO3)3·9H2O and La(NO3)·6H2O by a simple sol-gel method and its catalytic efficiency was evaluated for mineralization of 4-chlorophenol using a Fenton-like process. The mineralization process was carried out under ultrasonication in presence of heterogeneous LaFeO3 catalyst with H2O2 that was produced during ultrasonication. The mineralization process was monitored through total organic carbon (TOC) analysis. Very importantly, utmost 5-fold synergism was evidenced by the ultrasound mediated LaFeO3-catalyzed system. Besides, more than twofold synergism was observed by combining the ultrasound assisted LaFeO3 catalytic process and potassium persulfate (KPS) assisted advanced oxidation process. It is worth to mention that complete mineralization (∼96%) of 4-chlorophenol (initial concentration of 1.25 × 10−4 M) was observed within 1 h in the presence of LaFeO3 (0.5 g L−1) and KPS (1.0 mmol) under ultrasonication (40 kHz). Even after four cycles, the activity of LaFeO3 remained intact which proved its recyclability. Extremely reusable heterogeneous LaFeO3 catalyst makes the system more interesting from both economic and environmental points of view.  相似文献   

6.
The adsorption of 0.25, 0.5 and 1 monolayer (ML) of the transition metal Ni on the metal substrate Al(1 1 0) was studied using first-principles calculations at the level of density functional theory. The metal–metal system was analyzed with the generalized gradient approximation. Four stable atomic configurations were considered, and the optimized geometries and adsorption energies of different Ni adsorption sites on the Al(1 1 0) surface at selected levels of coverage were calculated and compared. The four-fold hollow site was determined to be the most stable adsorption site with adsorption energy of 5.101 eV at 0.25 ML, 3.874 eV at 0.5 ML and 3.665 eV at 1 ML. The adsorption energies of the four sites slightly decreased as the Ni coverage increased. Work function analysis showed that when Ni is adsorbed on the Al(1 1 0) surface, the work function decreased as the coverage increased due to depolarization. The Mulliken population and density of states were calculated to determine the charge distribution of the adsorption site, confirming that a chemisorption interaction exists between the adsorbed Ni atom and Al(1 1 0) surface atoms.  相似文献   

7.
Theoretical calculations focused on the geometry, stability, electronic and magnetic properties of small palladium clusters Pdn (n=1–5) adsorbed on the NiAl(1 1 0) alloy surface were carried out within the framework of density functional theory (DFT). In agreement with the experimental observations, both Ni-bridge and Al-bridge sites are preferential for the adsorption of single palladium atom, with an adsorption energy difference of 0.04 eV. Among the possible structures considered for Pdn (n=1–5) clusters adsorbed on NiAl(1 1 0) surface, Pd atoms tend to form one-dimensional (1D) chain structure at low coverage (from Pd1 to Pd3) and two-dimensional (2D) structures are more stable than three-dimensional (3D) structures for Pd4 and Pd5. Furthermore, metal-substrate bonding prevails over metal–metal bonding for Pd cluster adsorbed on NiAl(1 1 0) surface. The density of states for Pd atoms of Pd/NiAl(1 1 0) system are strongly affected by their chemical environment. The magnetic feature emerged upon the adsorption of Pd clusters on NiAl(1 1 0) surface was due to the charge transfer between Pd atoms and the substrate. These findings may shade light on the understanding of the growth of Pd metal clusters on alloy surface and the construction of nanoscale devices.  相似文献   

8.
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about −1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about −6.5 to −5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about −5.0 to −1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.  相似文献   

9.
Rezan Erdogan  Olus Ozbek  Isik Onal 《Surface science》2010,604(11-12):1029-1033
Water and ammonia adsorption mechanisms on anatase TiO2 (001) slab surface are investigated by means of periodic DFT approach. Molecular and dissociative adsorption energies for water are calculated to be ? 15 kcal/mol and ? 32 kcal/mol, respectively. Similarly, molecular and dissociative adsorption energies of ammonia on the same surface are found as ? 25 kcal/mol and ? 20 kcal/mol. A reverse result in this order is reached for the previous case of ONIOM cluster study (? 23 kcal/mol and ? 37 kcal/mol, respectively). The vibration frequency values are computed for the optimized geometries of adsorbed water and ammonia molecules on anatase TiO2 (001) slab surface and compared with the values reported in the literature.  相似文献   

10.
Using density functional theory (DFT) we report results for the electronic structure and vibrational dynamics of hydrogenated silicon carbide (001) (3 × 2) surfaces with various levels of hydrogenation. These results were obtained using density functional theory with a generalized gradient exchange correlation function. The calculations reveal that metallization can be achieved via hydrogen atoms occupying the second silicon layer. Further increase of hydrogen occupation on the second silicon layer sites results in a loss of this metallization. For the former scenario, where metallization occurs, we found a new vibrational mode at 1870 cm? 1, which is distinct from the mode associated with hydrogen atoms on the first layer. Furthermore, we found the diffusion barrier for a hydrogen atom to move from the second to the third silicon layer to be 258 meV.  相似文献   

11.
By performing density functional theory calculations, this work clarifies the sites and energetics of both the non-dissociative and dissociated adsorptions of CH3SH on clean Au(1 1 1) and Au(1 1 1) with intrinsic defects. It was found that the adsorption on defect-free Au(1 1 1) is most stable for non-dissociative CH3SH. Its direct molecular dissociation to form CH3S/Au and H/Au is barred by an activation barrier of 0.9 eV. However, the presence of neighboring Auad can assist the dissociation reaction to form CH3S–Auad–H by lowering the energy barrier to 0.6 eV. As for the dissociated CH3S, the surface geometry of two CH3S joined by a Auad is the most favorable one.  相似文献   

12.
The effect of isoelectric transition metals (TM) Nb and Ta on the magnetism of the V(001) surface is investigated from first principles using Density functional theory (DFT), with the generalized gradient approximation (GGA). Ferromagnetic (FM) moments of 2.5 μB and 2.2 μB are obtained for the relaxed surface V monolayer (ML) in the V/Nb(001) and the V/Ta(001) systems respectively, at T = 0 K. The values are almost twice of those obtained with Mo and W of group VIB and can be attributed to the comparatively smaller bandwidths of the substrates Nb and Ta. Small induced magnetic moments are present on the Nb and Ta interfacial layers, which are coupled anti-ferromagnetically with the V ML.  相似文献   

13.
《Solid State Ionics》2006,177(7-8):639-646
Cation diffusion in LaFeO3 has been studied using the solid state reaction between sintered bodies of La2O3 and Fe2O3 at 950–1350 °C in air or O2–N2 mixtures. LaFeO3 was the only product formed. The growth was parabolic and demonstrated to take place predominantly by diffusion of Fe3+ through the LaFeO3 layer. The self-diffusion coefficient of Fe3+ was accordingly calculated from the parabolic rate constant, and at constant activity of La2O3, aLa2O3 = 1, it shows Arrhenius-type behaviour with activation energy 320 ± 20 kJ/mol. It appeared to be independent of the surrounding pO2, but this was ascribed to lack of equilibrium with the atmosphere during growth of the LaFeO3 layer. Correspondingly, the product LaFeO3 is probably stoichiometric, and differences between our diffusivity and activation energy and those in the literature are discussed in view of this.  相似文献   

14.
The structural and electronic properties of group III rich In0.53Ga0.47As(001) have been studied using scanning tunneling microscopy/spectroscopy (STM/STS). At room temperature (300 K), STM images show that the In0.53Ga0.47As(001)–(4 × 2) reconstruction is comprised of undimerized In/Ga atoms in the top layer. Quantitative comparison of the In0.53Ga0.47As(001)–(4 × 2) and InAs(001)–(4 × 2) shows the reconstructions are almost identical, but In0.53Ga0.47As(001)–(4 × 2) has at least a 4× higher surface defect density even on the best samples. At low temperature (77 K), STM images show that the most probable In0.53Ga0.47As(001) reconstruction is comprised of one In/Ga dimer and two undimerized In/Ga atoms in the top layer in a double (4 × 2) unit cell. Density functional theory (DFT) simulations at elevated temperature are consistent with the experimentally observed 300 K structure being a thermal superposition of three structures. DFT molecular dynamics (MD) show the row dimer formation and breaking is facilitated by the very large motions of tricoodinated row edge As atoms and z motion of In/Ga row atoms induced changes in As–In/Ga–As bond angles at elevated temperature. STS results show there is a surface dipole or the pinning states near the valence band (VB) for 300 K In0.53Ga0.47As(001)–(4 × 2) surface consistent with DFT calculations. DFT calculations of the band-decomposed charge density indicate that the strained unbuckled trough dimers being responsible for the surface pinning.  相似文献   

15.
The gas response of tungsten trioxide (WO3) based sensors strongly depends on the surface properties. Reconstructed surfaces and oxygen point defects at the surface of the monoclinic WO3 are studied using a self-consistent scheme based on first-principle. The oxygen vacancy is found to be the predominant defect independently of the oxygen partial pressure. Indeed, under rich oxygen atmosphere the formation enthalpies are found to be 1.45 eV in LDA (1.28 eV in GGA) for the oxygen vacancy instead of 2.70 eV (2.42 eV) for the oxygen adatom. When the oxygen partial pressure is lowered, the oxygen vacancy formation enthalpy decreases and becomes exothermic under very O-poor condition (? 1.65 eV in LDA and ? 1.36 eV in GGA). On the other hand, the formation enthalpy of an oxygen adatom rises. Finally, the oxygen vacancy formation acts as a n-doping by introducing negative charge carriers at the bottom of the conduction band. All these results can be very helpful in order to explain the electrical resistivity measurements.  相似文献   

16.
We have studied the effect of Zn on hydrogenation of formate to dioxomethylene on the Cu(1 1 1) surface by using a density functional theory–generalized gradient approximation (DFT–GGA)-pseudopotential method. We show that substitutionally adsorbed Zn changes the stability of intermediate states and the activation barrier of the hydrogenation process only slightly. On the other hand, the Zn atom adsorbed on the Cu surface stabilizes all formate, transition state, and dioxomethylene relative to the gas-phase molecules. Our results support a previously proposed reaction scheme that the adsorption state of Zn changes from substitutional to on-surface adsorption during the methanol synthesis.  相似文献   

17.
Density functional theory calculations have been performed to investigate the structural and electronic properties of bulk Co2C and the stability of low index Co2C surfaces. We found that the formation of Co2C is exothermic with the formation energy of ? 0.81 eV/Co2C with respect to Co under the presence of syngas (mixture of CO and H2). While formed Co2C can be decomposed further to metal Co and graphite carbon with modest energy gain of 0.37 eV/Co2C. This suggests that Co2C is only metastable in Fischer–Tropsch synthesis, which agrees well with experimental findings. The density of states (DOSs) reveals that the Co2C is paramagnetic and strong metallic-like. The difference of charge density analysis indicates that the bond of Co2C is of the mixtures of metallic, covalent, and ionic properties. A variety of low index Co2C surfaces with different terminations are studied. We find that the surface energy of low index stoichiometric Co2C highly relies on the surface area, the number of coordination of surface atoms and the surface dipole, with the decreased stability order of (101) > (011) > (010) > (110) > (100) > (001) = (111). Our results indicate that under Co-poor condition, the formation of non ? stoichiometric surface (011) and (111) without terminated cobalt is energetically more favorable, while under Co-rich condition the formation of non ? stoichiometric (111) surface with cobalt overlayer are preferential.  相似文献   

18.
Periodic density functional theory has been utilized to investigate the structure and stability of monomeric HVOx species on anatase support. The three most stable surfaces of anatase were investigated, namely the (001), (100) and (101) surfaces. Unlike previous theoretical studies it was found that on the (001) surface vanadia species with five-coordinated vanadium atom are more stable than those with tetrahedrally coordinated vanadium atom. On the other hand, on the (100) and (101) surfaces, the vanadium atom in the vanadia species is still tetrahedrally coordinated. The stability of different VOx/TiO2 structures which are not fully dehydrated has been systematically studied and the results show that the vanadia species on the three surfaces follow an order of TiO2 (001) > TiO2 (100) > TiO2 (101). This can be understood from the acidity and basicity of the three anatase surfaces. The results suggest that monomeric VOx species may be better stabilized if the support exposes more (001) surfaces. Our analyses on electronic structure of the most stable VOx/TiO2 structure (D001) suggest that its bridging V–O–Ti oxygen atoms may have higher reactivity than the terminal vanadyl oxygen atoms.  相似文献   

19.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

20.
Tm2O3 crystalline films have been deposited on Si (0 0 1) by molecular beam epitaxy (MBE). Band alignments of Tm2O3/Si gate stacks were studied by X-ray photoelectron spectroscopy (XPS). According to XPS measurements, it can be noted that a valence-band offset of ?3.1 ± 0.1 eV and a conduction-band offset of 2.3 ± 0.3 eV for the Tm2O3/Si heterojunction have been obtained. Based on analysis from O 1s energy-loss spectrum, the energy gap of Tm2O3 is determined to be 6.5 ± 0.3 eV. A relatively thicker interfacial SiOx layer was observed for the as-annealed samples. However, no apparent change in band alignment has been observed for Tm2O3/Si heterojunction with the formation of interface layer, which has been discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号