首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heating a neat 1:2 mixture of 2-picolylamine and 2-cyanopyridine followed by treatment of the resultant red gummy substance with aqueous KOH resulted in the isolation of 2,4,5-tris(2-pyridyl)imidazole (1a) as the major product and N-(3-(2-pyridyl)imidazo[1,5-a]pyridine)picolinamidine (2a) in small amounts. Similarly, by using 3-picolylamine, 2,4,-bis(2-pyridyl)-5-(3-pyridyl)imidazole (1b) and N-(3-(3-pyridyl)imidazo[1,5-a]pyridine)picolinamidine (2b) were isolated, and by using 4-picolylamine, 2,4,-bis(2-pyridyl)-5-(4-pyridyl)imidazole (1c) and N-(3-(4-pyridyl)imidazo[1,5-a]pyridine)picolinamidine (2c) were isolated. The plausible mechanism of the formation of 1a-c and 2a-c is delineated.  相似文献   

2.
6-Unsubstituted 7-R-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidines (R = H or Me) were synthesized via two pathways: (a) deacylation of the corresponding 5-acetyl Biginelli-like precursors in KOH/H2O and (b) reduction of the corresponding 1,2,4-triazolo[1,5-a]pyrimidines using LiAlH4. The products could be easily formylated at position 6, which is promising for the further synthesis of functionalized 6-substituted derivatives of 4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidines. In contrast, 6-acetyl-7-(4-(N,N-dimethylaminophenyl))-5-methyl-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine undergoes a cascade process in KOH/H2O, leading to the formation of a 4,5,8,9-tetrahydro[1,2,4]triazolo[5,1-b]quinazoline derivative.  相似文献   

3.
The synthesis of novel 7-{[1,2,3]triazolo[1,5-a]pyridin-3-yl}-[1,2,3]triazolo[1,5-a]pyridines 7, 2-pyridyl-[1,2,3]triazolo[1,5-a]pyrid-7-ylmethanols 11, 3-(6-substituted-2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridines 12, and 7,7′-disubstituted-3,3′-[1,2,3]triazolo[1,5-a]pyridine 20, interesting polynitrogenated ligands as potential helicating compounds or luminescent sensors, from [1,2,3]triazolo[1,5-a]pyridines is described.  相似文献   

4.
Palladium–biscarbene complexes derived from N,N′-bis(1,2,4-triazol-1-yl)methane, which bear an alkyl chain functionalized with a hydroxyl group, have been synthesized ([Pd(L1)Br2] (6) and [Pd(L1)I2] (7) [L1 = 1,1′-(3-hydroxypropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)]). Each product is obtained as a non-equimolecular mixture of two conformers. The hydroxyl group has been replaced by bromide and methanesulphonate and ( [Pd(L2)Br2] [L2 = 1,1′-(3-bromopropylidene)bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (9)) and ([Pd(L3)Br2] [L3 = 1,1′-(3-methanesulphonyloxypropylidene)-bis(4-butyl-4,5-dihydro-1H-1,2,4-triazol-5-ylidene)] (10)) were obtained, respectively, as mixtures of conformers. All compounds consist of a six-membered metallacyclic structure in a boat conformation. Major conformers present the functionalized chain in the axial position, while in minor conformers it is located in the equatorial position.  相似文献   

5.
We presented the design, synthesis and preliminary evaluation of the 2,4-dinitrobenzenesulfonate (DNBS) of imidazo[1,5-α]pyridine derivative, NIPY-DNBS, as a turn-on fluorescent probe for the detection of thiols in aqueous solution. The reaction mechanism was confirmed by means of fluorescence, absorption and HRMS. The large Stokes shift (201 nm), high sensitivity (the detection limit for Cys was calculated to be as low as 0.17 μM) and fast response (10 min) of NIPY-DNBS make it a practical and reliable method for fluorescence imaging. Furthermore, application of NIPY-DNBS for the selective detection of intracellular thiols has been successfully demonstrated in living A549 cells.  相似文献   

6.
The coordination of heterocyclic thiourea ligands (L = N-(2-pyridyl)-N′-phenylthiourea (1), N-(2-pyridyl)-N′-methylthiourea (2), N-(3-pyridyl)-N′-phenylthiourea (3), N-(3-pyridyl)-N′-methylthiourea (4), N-(4-pyridyl)-N′-phenylthiourea (5), N-(2-pyrimidyl)-N′-phenylthiourea (6), N-(2-pyrimidyl)-N′-methylthiourea (7), N-(2-thiazolyl)-N′-methylthiourea (8), N-(2-benzothiazolyl)-N′-methylthiourea (9), N,N′-bis(2-pyridyl)thiourea (10) and N,N′-bis(3-pyridyl)thiourea (11)) with CuX (X = Cl, Br, I, NO3) has been investigated. CuX:L product stoichiometries of 1:1–1:5 were found, with 1:1 being most common. X-ray structures of four 3-coordinate mononuclear CuXL2 complexes (CuCl(6)2, CuCl(7)2, CuBr(6)2, and CuBr(9)2) are reported. In contrast, CuBr(1)2 is a 1D sulfur-bridged polymer. CuIL structures (L = 7, 8) are 1D chains with corner-sharing Cu2(μ-I)2 and Cu2(μ-S)2 units, and CuCl(10) is a 2D network having μ-Cl and N-/S-bridging L. Two [CuL2]NO3 structures are reported: a mononuclear 4-coordinate copper complex with chelating ligands (L = 10) and a 1D link-chain with N-/S-bridging L (L = 3). Two ligand oxidative cyclizations were encountered during crystallization. CuI crystallized with 6 to produce zigzag ladder polymer [(CuI)2(12)]·½CH3CN (12 = N-(pyrimidin-2-yl)benzo[d]thiazol-2-amine) and CuNO3 crystallized with 10 to form [Cu2(NO3)(13)2(MeCN)]NO3 (13 = dipyridyltetraazathiapentalene).  相似文献   

7.
The principal fragmentations of 41 azaindolizines having an imidazo[1,2-a]pyridine, imidazo[1,5-a]pyrimidine, imidazo[1,5-b]-1,2,4-triazine, triazolo[2,3-b], -[4,3-b]-, -[3,4-c]- and -[3,2-c]-1,2,4-triazine structure are described. It is shown that each structure has its own characteristic fragmentation pathways except where a Dimroth rearrangement into an isomeric product can be postulated. The degradation scheme is correlated with the number and the position of the nitrogen atoms of the azaindolizines.  相似文献   

8.
4,4,4-Trifluoro-1-(thien-2-yl)butane-1,3-dione (1) reacts with 5-aminopyrazole, 1,2,4-aminotriazole and 2-aminobenzimidazole derivatives, in the presence of triethylorthoformate under pressurized microwave irradiation to afford the corresponding trifluoromethyl derivatives of pyrazolo[1,5-a]pyrimidine, 1,2,4-triazolo[1,5-a]pyrimidine, and pyrimido[1,2-a]benzimidazoles. Also, compound 1 couples readily with azole diazonium salts to give pyrazolo[5,1-c]triazine, benzimidazo[5,1-c]1,2,4-triazine, and triazolo[3,4-c]1,2,4-triazine derivatives incorporating trifluoromethyl group.  相似文献   

9.
From the corresponding heterocyclic amino acids 2 and 9a the heterocyclic systems imidazo[1,5-a]pyridine ( 3 ) and imidazo[1,5-a]quinoline ( 10 ) are easily accessible. From compound 7 the tricyclic system 11 was prepared and from compound 17a a pyridyl-1,2,4-triazinone ( 18 ) could be obtained.  相似文献   

10.
Treatment of cyanoacetanilide derivative 1 with tetracyanoethylene (2) in dioxane/triethylamine furnished 2-pyridone derivative 6. Aminopyridine 9 was obtained by cyclization of compound 1 with ketene dithioacetal 7/EtONa. Cyclocondensation of 1 with malononitrile and/or acetylacetone (1:1 M ratio) gave pyridine derivatives 11 and 13. Ternary condensation of compound 1, aliphatic aldehydes and malononitrile (1:1:1 M ratio) yielded the 2-pyridones 20a and b. Bipyridines 22ac were prepared by refluxing of compound 21 with active methylene reagents. Cyclization of chromene derivatives 24 and 28 with malononitrile produced the novel chromeno[3,4-c]pyridine 26 and pyrano[3′,2′:6,7]chromeno[3,4-c]pyridine 29.  相似文献   

11.
Two boron complexes of 1-(o-hydroxyphenyl)imidazo[1,5-a]pyridine, which were named as BOHPIP, have been synthesized. These complexes exhibited blue emission in solution with high quantum yields (ΦFL?=?up to 0.71). In addition, 1-(o-hydroxyphenyl)imidazo[1,5-a]pyridine-BPh2 complex showed the strong blue emission even in the solid state (ΦFL?=?0.58).  相似文献   

12.
We have developed an improved synthesis of 3-(hetero)aryl pyrazolo[1,5-a]pyridines (such as 3-(2,5-dichloropyrimidin-4-yl)pyrazolo[1,5-a]pyridine (8)) via an optimized synthesis and Suzuki coupling of 3-pyrazolo[1,5-a]pyridine boronic ester 10. These conditions are applicable to both high throughput chemistry and large scale synthesis of these medicinally important compounds. The scope of this chemistry has been further extended to include the synthesis and coupling of a novel boronic ester, 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine (43).  相似文献   

13.
Fumitoshi Shibahara 《Tetrahedron》2009,65(26):5062-12876
The halogenation of 3-arylimidazo[1,5-a]pyridines was carried out with iodine, bromine, N-chlorosuccinimide, and 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate as halogenating agents to give selectively halogenated products 1-halo-3-arylimidazo[1,5-a]pyridines in good to excellent yields. Kumada-Tamao-Corriu cross-coupling of the obtained 1-iodo-3-arylimidazo[1,5-a]pyridines and aryl Grignard reagents led to 1,3-diarylated imidazo[1,5-a]pyridines in good to excellent yields. Suzuki-Miyaura cross-coupling of the 1-bromo-3-phenylimidazo[1,5-a]pyridine and p- or m-methoxycarbonylphenylboronic acids furnished the coupling product in respective yields of 91% and 61%. The obtained 1,3-diarylated imidazo[1,5-a]pyridines showed a wide variety of fluorescent emissions in a wavelength range of 449-533 nm with improved quantum yields compared to monoarylated ones.  相似文献   

14.
The complexes with long alkyl chains {[Fe(C16-trz)3](ClO4)2}n (1), [Fe(C15-BPT)2(NCS)2] (2), [Fe(C16-salen)Cl] (3), [Fe(C16-salmmen)Cl] (4), K[Fe(C16-salen)(CN)2] (5), K[Fe(C16-salmmen)(CN)2] (6), Na[Fe(C16-salmmen)(CN)2] (7), [Mn(C16-salen)Cl] (8), [Ni(C16-salen)] (9), [Cu(C16-salen)] (10) were synthesized (C16-trz = 4-hexadecyl-1,2,4-triazole, C15-BPT = N-(3,5-di-2-pyridinyl-4H-1,2,4-triazol-4-yl)-hexadecanecarboxamide, C16-salen = N,N-bis[4-(hexadecyloxy)salicylidene]ethylenediamine, C16-salmmen = N,N′-bis[4-(hexadecyloxy)salicylidene]-1,2-diaminopropane). Langmuir–Blodgett (LB) films of compounds 110 were prepared (Scheme 1). The transfers of the molecules from onto the gas–water surface to glass substrate were confirmed by UV–Vis spectra. The second harmonic generation (SHG) were estimated for the LB films formed by the metal complexes. The SHG was observed for the complexes with the long alkyl chains in LB film. The order of the intensity for the SHG related with the number of unpaired d electrons or the d electron configurations.  相似文献   

15.
《Tetrahedron letters》2014,55(50):6925-6930
The new blue-violet dye 2-(3-hydroxyimino-2,3-dihydroimidazo[1,2-a]pyridin-2-yliden)-2-(2-thienyl)acetonitrile was prepared in high yield from the reaction of 3-nitroimidazo[1,2-a]pyridine with 2-(2-thienyl)acetonitrile by nucleophilic substitution of hydrogen. Acylation of the hydroxyl group led to a new heterocyclic system, (pyrido[2′,1′:2,3] imidazo[4,5-b]thieno[2,3-e]pyridine-11-carbonitrile) with very strong blue-green fluorescent properties. Physical, spectral and analytical data have confirmed the structures of the synthesized dyes. The optical and solvatochromic properties of these compounds were investigated and showed interesting photophysical properties. Density functional theory calculations of blue-violet and fluorescent dyes were performed to provide the optimized geometries, Mulliken atomic charges, relevant frontier orbitals and the prediction of 1H NMR chemical shifts. The electrochemical properties of these dyes were investigated by cyclic voltammetry and an oxidation wave was observed at a half-wave potential of −0.143 V versus SCE for the blue-violet dye. Also, these new compounds exhibited potent antibacterial activity against Gram positive and negative bacterial species.  相似文献   

16.
《Polyhedron》2005,24(16-17):2437-2442
The synthesis and magnetic characterization of pyrazolato-bridged dinuclear complexes [{M(NCS)(4-Phpy)}2(μ-bpypz)2] (Hbpypz = 3,5-bis(2-pyridyl)-pyrazole; 4-Phpy = 4-phenylpyridine; M = Co2+ (1) and Fe2+ (2)) are described together with the X-ray crystal analysis of the cobalt complex. The structure of 1 shows that the desired coordination has been achieved with the cobalt atoms being coordinated to two bpypz to form the dimer. The X-ray diffraction patterns show 1 and 2 to be isomorphous at room temperature. 2 displays a single spin-crossover transition between the [HS–HS] and [LS–LS] states with Tc = 150 K.  相似文献   

17.
Treatment of 1,2,4-triazoles (1) with diethylmalonate in bromobenzene gave 1,2,4-triazolo-[1,5-a]pyridines 2. Chlorination of 2 using POCl3/DMF (Vilsmeier reagent) led to the isolation of 7-chloro-6-formyl-1,2,4-triazolo[1,5-a]pyridine derivative 4, which reacted with the stabilized ylid 5 to afford 6-ethoxycarbonylvinyl-1,2,4-triazolo[1,5-a]-pyridines 6. Azidation of 6 yielded the corresponding azido compound 7, (Scheme 2). Reduction of 7 with Na2S2O4 gave the corresponding 7-amino compound 8, which cyclized in boiling DMF to give the novel 1,2,4-triazolo[1,5-g][1,6]naphthyridines 9. On the other hand, reacting 7 with one equivalent of PPh3 (aza-Wittig reaction) in CH2Cl2 gave 7-imino-phosphorane derivative 10, and subsequent cyclization in boiling DMF afforded the new 1,2,4-triazolo[1,5-g][1,6]naphthyridine derivative 11 (Scheme 3). However, treatment of 10 with phenyl isothiocyanate in 1,2-dichlorobenzene at reflux temperature gave the new 1,2,4-triazolo[1,5-g][1,6]naphthyridine derivative 14 (Scheme 4). Refluxing 6 with excess of a primary amines 15a,b in absolute. EtOH yielded the corresponding 7-alkyl-amino-1,2,4-triazolo[1,5-a]pyridines 16a,b. These obtained amines 16a,b underwent intramolecular heterocyclization in boiling DMF to give the novel 9-alkyl-1,2,4-triazolo[1,5-g][1,6]-naphthyridines 17a,b, in excellent yields (Scheme 5).  相似文献   

18.
Nitroso derivatives of imidazo[1,2-a]pyridine ( 11, 13, 14 ), imidazo[1,2-a]pyrimidine ( 15 ), imidazo[1,2-a]pyrazine ( 16 ), imidazo[1,2-b]pyrazole ( 17 ), and imidazo[1,2-b]-1,2,4-triazole ( 19 ) were obtained in good yields from α-ketohydroximoyl chlorides 3 and 2-aminopyridines ( 4–6 ), 2-aminopyrimidine ( 7 ), 2-aminopyrazine ( 8 ), 5-amino-3-phenylpyrazole ( 9 ), and 3-amino-2H-1,2,4-triazole ( 10 ), respectively. Under different conditions, the reaction of 3 with 3-amino-2H-1,2,4-triazole ( 10 ) and 2-aminopyrazine ( 8 ) afforded the noncyclized substitution products 18 and 22 , respectively. The structures of the products were assigned and confirmed on the basis of their elemental analyses, spectral data, and alternate synthesis wherever possible.  相似文献   

19.
One-pot’ synthesis of nitrogenous heterocyclic compounds (1 and 2) containing a pair of biologically relevant imidazo[1,5-a]pyridine moiety has been reported; compound 1 being a planar molecule, shows enough flexibility during its coordination to bivalent transition metal ions forming, for example, a triple stranded helicate with copper(II).  相似文献   

20.
The reaction of 3-aroylquinoxalin-2(1H)-ones and their N-alkyl analogues with benzylamines in DMSO proceeds through an intermediate formation of N-(α-quinoxalinylbenzylydene)benzylamine, which when subjected to oxidative cyclocondensation gives imidazo[1,5-a]quinoxalines. Applying this new approach of imidazoannullation to the bis-3-aroylquinoxalines makes it possible to develop fundamentally new methods of the synthesis of bis-imidazo[1,5-a]quinoxalines with the use of different benzylamines and heteromacrocycles with the 1,3-bis(3-arylimidazo[1,5-a]quinoxalin-1-yl)benzene structural fragment when m-xylylenediamine is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号