首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dipodal receptor was synthesized by condensation of isophthalaldehyde and p-toluenesulfonylhydrazide. The receptor was found to be selective for Cu2+ recognition in CH3CN. The resultant Cu2+ receptor complex selectively recognized iodide through cation displacement assay in a CH3CN/H2O (8:2, v/v) solvent system.  相似文献   

2.
A novel coumarin derivative CTT was synthesized via the condensation of 7-(N,N-diethylamino) coumarin-3-aldehyde with 5-amino-1,3,4-thiadiazole-2-thiol and its structure was characterized using infrared spectroscopy (IR), 1H NMR, mass spectrometry (MS) techniques, and elemental analysis. The recognition properties of CTT with metal ions were investigated in CH3CN–H2O (v/v = 1/1) solution using UV–vis absorption and fluorescence emission spectrum method. The results showed that CTT could monitor Cu2+ and Hg2+ simultaneously as a dual-function chemosensor in CH3CN–H2O (v/v = 1/1). CTT could be used to detect Cu2+ colorimetrically; when using CTT, a color change from yellowish-brown to yellowish-green could be readily observed by the naked eye. CTT showed turn-on fluorescent recognition of Hg2+, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of CTT. The recognition mechanism of CTT for Cu2+ and Hg2+ was studied by experiments and theoretical calculations, respectively. Therefore, CTT has the ability to be a “single chemosensor for dual targets.”  相似文献   

3.
A novel fluorescent probe, LCH , based on dicyanisophorone and carbazole, was prepared for the visual detection of Cu2+. The probe LCH could recognize Cu2+ by fluorescence quenching in EtOH/H2O (1/4, v/v) solution, which could be easily identified under the 365 nm UV lamp, and the detection limit was as low as 0.785 μM. The recognition mechanism of probe LCH with Cu2+ was determined by combining 1H NMR titration, MS, and theoretical calculations. Practical application experiments showed that probe LCH could be used to detect Cu2+ in the test strip experiments. Cell imaging experiments showed that the probe LCH owned good cell permeability and could be applied to the imaging of Cu2+ in HepG2 cells. In addition, fluorescence colocalization experiments showed that LCH could target lipid droplets. These results indicate that the probe LCH will have a good application prospect in environmental detection and clinical medicine.  相似文献   

4.
In this work, we synthesised and characterised three novel fluorescence macrocyclic sensors containing optically active dansyl groups. The studies for the interaction of the synthesised compounds with various mental ions (Li+, Na+, K+, Ag+, Mg2+, Ca2+, Ba2+, Pb2+, Zn2+, Co2+, Cd2+, Hg2+, Ni2+, Cu2+, Mn2+, Cr3+, Al3+, Fe3+) were performed by fluorescence titration, Job’s plot, ESI-MS and DFT calculations. The results showed that the sensors 1a–1c displayed selective recognition for Cu2+ and Fe3+ ions and formed stoichiometry 1:1 complex through PET mechanism in DMSO/H2O solution (1:1, v/v, pH 7.4 of HEPES). The binding constant (K) and detection limit were calculated.  相似文献   

5.
Three novel compounds bearing 2,7-dihydroxylnaphthalene capable of detecting Cu2+ or Fe3+ have been synthesised based on photoinduced electron transfer. The ability of these compounds for complex transition metal ions has been studied, and complex stoichiometry for Cu2+ and Fe3+ complex has been determined in the Tris–HCl (0.01 M DMSO/H2O (v/v) 1:1, buffer, pH 7.4) solution system by fluorescence titration experiments. These chemosensors form a 1:1 complex with Cu2+ or Fe3+ and show a fluorescent quenching with a binding constant of (4.46 ± 0.29) × 103 and (8.04 ± 0.26) × 104, respectively.  相似文献   

6.
A novel fluorescence chemosensor 1 based on (R)‐binaphthyl‐salen can exhibit highly sensitive and selective recognition responses toward Cu2+ by "turn‐off" fluorescence quench type in THF/H2O, and Zn2+ by "turn‐on" fluorescence enhancement type in CHCl3/CH3CN, respectively, suggesting that solvents can dramatically affect the responsive properties of salen‐based chemosensor. In addition, Cu2+ can lead to the most pronounced changes of CD spectra without the influence of solvents, which indicates this kind chemosensor can also be used as a sole Cu2+ probe based on CD spectra.  相似文献   

7.
Activated sludge was tested for its ability to remove Cu2+ from aqueous solution. The effects of various experimental parameters (initial pH, initial Cu2+ concentration, adsorbent dosage, and temperature) on Cu2+ adsorption were evaluated. The Langmuir isotherm model well described the adsorption of Cu2+ onto activated sludge. The pseudo-second-order kinetic equation was appropriate for describing the kinetic performance of the sorption. Furthermore, Webber–Morris models indicated that the sorption of Cu2+ was generally found to involve with the intraparticle diffusion process. Parameters of adsorption thermodynamic suggested that the interaction of Cu2+ adsorbed by sludge was spontaneous and exothermic. Activated sludge was characterized by Fourier transform infrared spectroscopy analysis and results showed that active groups such as –OH, –COOH, –NH2 were involved in Cu2+ adsorption. Zeta potential analysis demonstrated inner-sphere adsorption for Cu2+ adsorption on sludge.  相似文献   

8.
The first Alkaline Alkaline-Earth Oxocuprate (II, III): NaBa2Cu22+Cu3+O6 The compound NaBa2Cu3O6 was prepared by heating of Na2O2, BaO2, Cu2O in closed Ag-tubes. X-ray single crystal investigations led to orthorhombic symmetry, space group D-Fmmm; a = 8.4229; b = 11.4418; c = 14.4063 Å; Z = 8. Cu2+ and Cu3+ show square planar polygones of four and Na+ trigonal prisms of six O2?. The two barium point positions show coordination numbers C.N. = 8 and 6 + 4. The crystal structure is discussed.  相似文献   

9.
A new distyryl boron dipyrromethene (BODIPY) with two bis(1,2,3‐triazole)amino substituents has been prepared by typical Knoevenagel condensation followed by click reaction. The compound selectively binds to Cu2+ and Hg2+ ions in CH3CN/H2O (1:1 v/v) to give remarkably blueshifted electronic absorption and fluorescence bands as a result of inhibition of the intramolecular charge‐transfer process upon binding to these metal ions. The color changes can be easily seen by the naked eye. The binding stoichiometry between this probe and Cu2+ ions has been determined to be 1:2 by a Job plot of the fluorescence data with a binding constant of ((6.2±0.6)×109) M ?2. The corresponding value for Hg2+ ions is about sixfold smaller.  相似文献   

10.
The complexation properties of the open-chain N2S2 ligands 1–4 are described and compared to those of analogous N2S2 macrocycles 5–7 . With Cu2+, the open-chain ligands give complexes with the stoichiometry CuL2+ and CuLOH+, the stabilities and absorption spectra of which have been determined. The ligand field exerted by these ligands is relatively constant and independent of the length of the chain. With Cu+, the species CuLH, CuLH2+, and CuL+ were identified and their stabilities measured. The redox potentials calculated from the equilibrium constants and measured by cyclic voltammetry agree and lie between 250 and 280 mV against SHE. The comparison between open-chain and cyclic ligands shows that (1) a macrocyclic effect is found for Cu2+ but not for Cu+, (2) the ligand-field strength is very different for the two types of ligands, and (3) the redox potentials span a larger interval for the macrocyclic than for the open-chain complexes.  相似文献   

11.
Brushite cements show excellent biocompatibility and are therefore an often-used material for bone repair. However, methods to prevent inflammations after surgery are needed. As Cu2+ was proven to provide antibacterial properties, as well as other application relevant features, it is a promising additive. Concerning these factors, a brushite cement containing Cu2+-doped β-tricalcium phosphate, monocalcium phosphate monohydrate, and phytic acid as setting retarder was investigated with powder and in situ X-ray diffraction, isothermal heat flow calorimetry, in situ 1H-time domain – nuclear magnet resonance, and pore solution analysis. The influence of Cu2+ ions on the hydration kinetics of the brushite cement and the locations of the Cu2+ ions after completion of the hydration were the main questions of interest. Heat flow calorimetry showed a significant retardation and deceleration of the hydration with increasing Cu2+ content in β-tricalcium phosphate. This effect can be directly correlated to the Cu2+ ions, as it was also shown for cements without phytic acid. X-ray diffraction showed brushite as main hydrate phase. Additionally, Cu2+-doped cements formed a hydrate phase not assignable by X-ray diffraction, which is assumed to be Cu2+ containing. Furthermore, Cu2+ was detected in the pore solution after the hydration, and no signs of Cu2+ incorporation in the crystal structure of brushite were found.  相似文献   

12.
A novel copper selective sensor 2 based on hydrazide and salicylaldehyde has been designed and prepared. Sensor 2 behaves a single selectivity and sensitivity in the recognition for Cu2+ over other metal ions such as Fe3+, Hg2+, Ag+, Ca2+, Zn2+, Pb2+, Cd2+, Ni2+, Co2+, Cr3+ and Mg2+ in DMSO. The distinct color change and the rapid changement of fluorescence emission provide naked‐eyes detection for Cu2+. The UV‐vis data indicate that 1:2 stoichiometry complex is formed by sensor 2 and Cu2+. The association constant Ks was 3.51×104 mol?1·L. The detection limitation of Cu2+ with the sensor 2 was 2.2×10?7 mol·L?1. The sensing of Cu2+ by this sensor was found to be reversible, with the Cu2+‐induced color being lost upon addition of EDTA.  相似文献   

13.
In this study, we have successfully synthesized a novel coumarin-based dendrons derivative CD and its chemical structure was characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor CD showed an obvious “on-off” fluorescence quenching response toward Cu2+ with a maximum quenching efficiency of 99.8%. The CD-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions. The detection limit of the sensor CD was 0.29?×?10?6?M to Cu2+ and 2.39?×?10?9?M to PPi. In addition, the sensor CD showed a 1:1 binding stoichiometry to Cu2+ and the sensor CD-Cu2+ showed a 2:1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.2). The stable pH range of sensor CD to Cu2+ and CD-Cu2+ to PPi was from 3 to 8.  相似文献   

14.
X-ray photoelectron spectroscopy provides evidence that when [Cu(phen)2]2+(phen = 1,10-phenanthroline) is diffused between the layers of -zirconium phosphate, the complex species does not remain intact after intercalation, but some Cu-N bonds are broken, replaced with Cu-O bonds and the released nitrogen atoms can now interact with the PO3-OH groups of the host. XPS also provides evidence for coordination of the Cu2+ ions when they are diffused by ion exchange in the phenanthroline--zirconium phosphate intercalation compound. Although Cu2+ and phen are in a 1 : 1 molar ratio in the interlayer region of the host, so that a 1 : 1 coordination could be expected between the two species, the characteristic peaks of the uncoordinated phenanthroline, even though at a low intensity, are still present. The differences between the two Cu(II)-intercalation compounds are discussed.  相似文献   

15.
《Electroanalysis》2017,29(2):441-447
A convenient and simple electrochemiluminescence (ECL) method was employed to detect trace amounts of Cu2+ in drinking water. This method is based on the inhibitory effect of Cu2+ on the ECL of Ru(phen)32+ and 1,4,8,11‐tetraazacyclotetradecane (cyclam) system. ECL intensity of Ru(phen)32+ was considerably enhanced by the addition of cyclam because of the ECL reaction between them. The ECL intensity of Ru(phen)32+/cyclam system rapidy decreased with the addition Cu2+ because of the formation of chelate complex [Cu(cyclam)]2+. Good linear response (R 2=0.9948) was obtained at Cu2+ concentration of 1.0×10−9−1.0×10−5 mol ⋅ L−1 at glassy carbon electrode in 0.1 mol ⋅ L−1 phosphate buffer (pH 9.0). Observed detection limit of 4.8×10−10 mol ⋅ L−1 satisfied the maximum contaminant level goal (MCLG) for Cu2+ set by the US Environmental Protection Agency (US EPA). Applicability of the proposed method was verified by the good reproducibility and stability of the method when applied to determine Cu2+ in tap water and simulated wastewater. Thus, a novel ECL detection method was developed for Cu2+ detection.  相似文献   

16.
A novel thiosemicarbazone fluorophore (3) was successfully synthesized in 3 steps via Sonogashira coupling and Knoevenagel condensation using baker's yeast (Saccharomyces cerevisiae) as a biocatalyst. Compound 3 contains triphenylacetylene, which acts as a fluorophore, and thiosemicarbazone, which acts as a copper probe. Compound 3 exhibited highly selective detection of Cu2+ ions based on photoinduced electron transfer (PET) in 10 mM HEPES buffer pH 7.4/propylene glycol (70% (v/v)). A linear relationship was observed for Cu2+ concentrations between 0.1 nM and 10 μM, and the detection limit of the method was 0.14 nM. Additionally, 3 was utilized to detect Cu2+ in wastewater with satisfactory results, which highlighted its potential for real sample applications.  相似文献   

17.
Disulfide based receptor was prepared using single step condensation reaction and suspended into organic nanoparticles to extend its practical application in aqueous samples. The prepared nanoparticles were used for the simultaneous recognition of three different metallic species (Cu2+, Cd2+, and Pb2+) in aqueous media through voltammetric studies. These metals can be determined simultaneously and without interferences from any of the other potential interferent metal ions, as different signals are displayed in cyclic as well as differential pulse voltammograms, with a detection limit of 193.0 nM for Cu2+, 52.0 nM for Cd2+ and 32.0 nM for Pb2+. The study was extended to real sample analysis by preparing the artificial mixtures of said metal ions.  相似文献   

18.
The preparation of CuI + Ag2S and Cu2[HgI4] + Ag2S membranes hydrophobised by PTFE is described. The pressed membranes mounted in a multi-purpose “all-solid-state” electrode body have been examined as electrochemical sensors for Cu2+ and I? ions. For the electrode with (CuI + Ag2S + PTFE)-membrane experimental slopes of 29 mV(pCu)?1 and 62 mV(pI)?1 were obtained, in good agreement with the theoretical values. For practical measurement in solutions where both Cu2+ and I? can be present, the investigated electrode offers certain advantages in comparison with a commercial Cu-ISE.  相似文献   

19.
In this study, we have successfully synthesized a new coumarin based fluorescent chemosensor 1, in which tren and quinolone are introduced as receptors for sequential recognition of Cu2+ and PPi. The structure of chemosensor 1 was characterized by 1H NMR, 13C NMR and ESI-HR-MS. Sensor 1 showed an obvious “on-off” fluorescence quenching response toward Cu2+, and the quenching efficiency reached a maximum of 99.6% with the addition of 20 equiv. of Cu2+. The 1-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions, especially HPO42? and H2PO4?. The detection limit of sensor 1 was 1.9?×?10?6?M to Cu2+ and 5.96?×?10?8?M to PPi. In addition, sensor 1 showed a 1:1 binding stoichiometry to Cu2+ and sensor 1-Cu2+ showed a 2: 1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.4). The stable pH range of sensor 1 to Cu2+ and 1-Cu2+ to PPi was from 4 to 8.  相似文献   

20.
A new on-off fluorescent probe 1 for Cu2+ based on Schiff base compound was designed and synthesized by one-step reaction. The single probe 1 exhibited strong green fluorescence emission. A fluorescence quenching effect and faint color change were observed as soon as the Cu2+ was added to the probe system in H2O/EtOH (v/v = 8:2, HEPES buffer, 0.05 M, pH = 7.4) solution. Other common metal cations did not cause the changes in the fluorescence and color of the probe 1. The optical properties were studied by the fluorescence emission and UV–Vis spectra. Meanwhile, the geometry optimizations of probe 1 and the [1-Cu2+] coordination complexes were also carried out by DFT using the Gaussian 09 program, in which the B3LYP function was used. Based on experimental measurement and theoretical analysis, we can know that the combination ratio of the probe and Cu2+ is 2:1 and the limit of detection (LOD) is as low as 5.3 × 10?9 M Besides, the probe 1 was also used to analyze the Cu2+ in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号