首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The adsorption and reaction of glycine on the surface of a rutile TiO2(011) single crystal has been studied by X-ray Photoelectron Spectroscopy (XPS) and Temperature Programmed Desorption (TPD) techniques. Special attention was given to the formation and stability of the zwitterion structure (+NH3–CH2–COO?) in comparison to that of the dissociated structure (NH2–CH2–COO?). Both species have been observed on the surface at 300 K. The zwitterion structure was found less stable than the dissociated structure. This is in line with other experimental results related to proline on rutile TiO2(110) single crystal [13, 14], glycine on rutile TiO2(110) single crystal [17, 24] and computational results related to glycine on rutile TiO2(110) single crystal [25]. By 500 K most of the zwitterion structure has been converted to the dissociated one. TPD results indicated that glycine reacts in a similar way to carboxylic acids on this surface with the main decomposition products being ketene (CH2=C=O). Other masses left unassigned for were also observed during TPD. The most intense being m/e 55 that might be due to =CH–C(O)N=or C(O)N=CH fragments.  相似文献   

2.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

3.
Thickness and chemical composition of the TiNxOy thin films deposited by reactive magnetron sputtering from Ti target at controllable oxygen flow rate were determined by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The films were deposited on carbon foils and amorphous silica (a-SiO2) substrates at 25 °C and 250 °C. The estimated film thickness is of 75-100 nm. The O/Ti atomic ratio in the films increases up to 1.5 with increasing oxygen flow rate, while that of N/Ti decreases from about 1.1 for TiN to 0.4 at the highest oxygen flow rate. Substantial out-diffusion of carbon from the substrate is observed which is independent of the substrate temperature. Films grown onto a-SiO2 substrates can be treated as homogeneous single layers without interdiffusion. It is more difficult to determine the nitrogen and oxygen content due to superposition of RBS signals arising from film and substrate. RBS analysis of the depth profile indicates that for the investigated films the carbon diffusion and oxidation not only at the topmost surface layers but over the bulk of the films were found. Comparison with XPS results indicates substantial oxygen adsorption at the surface of TiNx thin films obtained at zero oxygen flow rate.  相似文献   

4.
The composition and thermodynamic stability of the (110) surface of Sn1 - xTixO2 rutile solid solutions was investigated as a function of Ti-distribution and content up to the formation of a full TiO2 surface monolayer. The bulk and (110) surface properties of Sn1 - xTixO2 were compared to that of the pure SnO2 and TiO2 crystal. A large supercell of 720 atoms and a localized basis set based on the Gaussian and plane wave scheme allowed the investigation of very low Ti-content and symmetry. For the bulk, optimization of the crystal structure confirmed that up to a Ti-content of 3.3 at.%, the lattice parameters (a, c) of SnO2 do not change. Increasing further the Ti-content decreased both lattice parameters down to those of TiO2. The surface energy of these solid solutions did not change for Ti-substitution in the bulk of up to 20 at.%. In contrast, substitution in the surface layer rapidly decreased the surface energy from 0.99 to 0.74 J/m2 with increasing Ti-content from 0 to 20 at.%. As a result, systems with Ti atoms distributed in the surface (surface enrichment) had always lower energies and thus were thermodynamically more favorable than those with Ti homogeneously distributed in the bulk. This was attributed to the lower energy necessary to break the TiO bonds than SnO bonds in the surface layer. In fact, distributing the Ti atoms homogeneously or segregated in the (110) surface led to the same surface energy indicating that restructuring of the surface bond lengths has minimal impact on thermodynamic stability of these rutile systems. As a result, a first theoretical prediction of the composition of Sn1 - xTixO2 solid solutions is proposed.  相似文献   

5.
Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A “double junction” is proposed, involving a Schottky junction and p–n junction (denoted as “Ag-p–n junction”) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm−1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.  相似文献   

6.
Jens B?k Simonsen 《Surface science》2010,604(15-16):1300-1309
The interaction between 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and the rutile TiO2(110)–(1 × 1) surface under ultrahigh vacuum (UHV) conditions was investigated using X-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The NEXAFS results showed that HHTP molecules formed a submonolayer and a monolayer that aligned along the [001]-direction with, respectively, a more or less flat downward orientation and a more upright orientation to the TiO2 surface. The HHTP molecules that aligned along the [001]-direction were most likely grafted onto the TiO2(110) surface by a bidentate bridge between each of the oxygen atoms of one of the catechol units within the HHTP molecule and two adjacent Ti(5f)4+ ions on the TiO2(110) surface. The coordination is non-dissociative in the case of the submonolayer, but dissociative in the monolayer, according to the analysis of the C1s XPS, UPS, C1s NEXAFS data and complementary DFT calculations.  相似文献   

7.
The chemistry and photochemistry of methylene bromide (CD2Br2) on the rutile TiO2(110) surface was probed using temperature programmed desorption (TPD). CD2Br2 desorbed in three desorption states at 145, 160 and 250 K tentatively assigned to desorption from the multilayer, from an η1-CD2Br2 species and a bridging η2-CD2Br2 species, respectively. The latter two TPD states presumably involve binding of CD2Br2 molecules to the surface through Br coordination at five-coordinate Ti4+ surface sites. The 160 and 250 K TPD states saturated at coverages of 1.0 and 0.33 ML, respectively, where 1 ML is equivalent to the surface Ti4+ site density (5.2 × 1014 cm? 2). No thermal decomposition of CD2Br2 was observed on either the clean surface or with preadsorbed O2. UV irradiation of CD2Br2 on TiO2(110) resulted in predominately photodesorption, with trace amounts of photodecomposition evidenced in TPD. The rate of CD2Br2 photodesorption from TiO2(110) occurred with a low cross section (~ 2 × 10? 21 cm2) similar to that expected from direct optical excitation of CD2Br2. This observation suggests that charge carriers generated in TiO2(110) were no more effective in activating adsorbed CD2Br2 molecules than would be expected through direct molecular excitation. These findings suggest that photocatalytic destruction of halocarbons such as CD2Br2 on TiO2 may preferentially occur though indirect processes (such as OH radical attack) as opposed to direct electron transfer processes involving charge carriers generated in TiO2 by bandgap excitation.  相似文献   

8.
《Physics letters. A》2006,359(5):523-527
We have investigated the magnetism and the electronic structure of V-doped rutile TiO2 using the first-principles full potential linearized augmented plane-wave (FP-LAPW) method. Total energy calculations reveal that V-doped rutile TiO2 has a stable ferromagnetic ground state. Meanwhile, the electronic structure analysis indicates that V-doped rutile TiO2 is a half-metal within the local density approximation (LDA) while a semiconductor within the LDA + U (Hubbard coefficient). The calculated magnetic moment in V-doped rutile TiO2 mainly arises from the V atom with a little contribution from the nearest-neighboring O atoms due to the hybridization between the V 3d states and the nearest-neighboring O 2p states.  相似文献   

9.
The electrochemical properties of rutile-type TixSn1?xO2 solid solutions (x = 0–1.0) as an anode for a lithium–ion battery were investigated using nanosized crystals prepared by an aqueous solution process. The reduction of the crystal size to nanoscale allowed a smooth lithium insertion into the rutile framework at room temperature. The lithium-insertion behavior of TiO2, SnO2, and the solid solutions was evaluated without any structural change of the rutile-type crystal structure in the potential range of 1.2–3.5 V (versus Li/Li+). The interstitial spaces for lithium ions were found to be derived from the crystal structure of the rutile framework and independent of the metal species.  相似文献   

10.
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 °C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films’ phase composition, increasing with the increase of the Urbach energy for increasing rutile content.  相似文献   

11.
The influence of the vanadium load and calcination temperature on the structural characteristics of the V2O5/TiO2 system was studied by X-ray diffraction and X-ray absorption spectroscopy (XAS) techniques. Samples of the V2O5/TiO2 system were prepared by the sol–gel method under acid conditions and calcined at different temperatures. The rutile phase was found to predominate in pure TiO2 calcined at 450 °C as a result of the reduction of phase transition temperature promoted by the sol–gel method under acid conditions. The anatase phase became predominant at 450 °C as the amount of vanadium increased from 6 to 9 wt%. A structural change in the TiO2 phase from predominantly anatase to totally rutile with increased calcination temperature was observed in 6 wt% samples. An analysis of the vanadium X-ray Absorption Near Edge Structure (XANES) spectra showed that the oxidation state of vanadium atoms in the samples containing 6 and 9 wt% of vanadium and calcined at 450 °C was predominantly V4+. However, the presence of V5+ atoms cannot be ruled out. A qualitative analysis of extended X-ray absorption fine structure (EXAFS) spectra of the samples containing 6 and 9 wt% of vanadium calcined at 450 °C showed that the local structure around vanadium atoms is comparable to that of VO2 crystalline phase, in which vanadium atoms are fourfold coordinated in a distorted structure. For the sample after calcination at 600 °C, the EXAFS and XANES results showed that a significant portion of vanadium atoms were incorporated in the rutile lattice with a VxTi(1−x)O2 solid solution formation. The conditions of sample preparation used here to prepare V2O5/TiO2 samples associated with different amounts of vanadium and calcination temperatures proved to be useful to modifying the structure of the V2O5/TiO2 system.  相似文献   

12.
T. Pabisiak  A. Kiejna 《Surface science》2011,605(7-8):668-674
The adsorption of gold atoms and formation of nanostructures on the rutile TiO2(110) surface with different degree of oxygen reduction was studied from first principles. The Au atoms adsorb strongest at oxygen vacancy sites. Starting from a very low coverage limit the potential energy profiles or diffusion paths of the adsorbed Au monomers and dimers were calculated. Stable structures of two to nine Au atoms arranged in finite and infinite rows and in the shape of finite-size clusters were determined. All these structures are found to bind to the reduced surface stronger than 2 eV/atom. The elongated Au row-like structures bind by about 0.1 eV stronger than 3D clusters, suggesting a preference for the 1D-like Au growth mode on the missing-row reconstructed TiO2(110).  相似文献   

13.
Electrochromic molybdenum oxide (MoO3) thin films were prepared by electron beam evaporation technique using the dry MoO3 pellets. The films were deposited on glass and fluorine doped tin oxide (SnO2:F or FTO) coated glass substrates at different substrate temperatures like room temperature (RT, 30 °C), 100 °C and 200 °C. The influence of substrate temperature on the structural, surface morphological and optical properties of the films has been studied. The X-ray diffraction analysis showed that the films are having orthorhombic phase MoO3 (α-MoO3) with 〈1 1 0〉 preferred orientation. The laser Raman scattering spectrum shows the polycrystalline nature of MoO3 films deposited at 200 °C. The Raman-active band at 993 cm−1 is corresponding to Mo–O stretching mode that is associated with the unique character of the layered structure of orthorhombic MoO3. Needle—like morphology was observed from the SEM analysis. The energy band gap of MoO3 films was evaluated which lies between 2.8 and 2.3 eV depending on the substrate temperature and substrates. The decrease in band gap value with increasing substrate temperature is owing to the oxygen-ion vacancies. The absorption edge shift shows the coloration effect on the films.  相似文献   

14.
Nanostructured TiO2 particles utilized in dye-sensitized solar cells (DSSCs) provide a large surface area, which facilitates the adsorption of sensitizing dye and charge recombination due to the high density of surface traps. In this article, a modified surface of TiO2 nanoparticles was successfully synthesized in the presence of (1-hydroxycyclohexyl)(phenyl)methanone (HCPM) as a sensitizer to control formation in a toluene/ethanol medium via a photolytic process. A particle-size analysis showed that the oxides which had fully oxidized to TiO2 were 20~35 nm in diameter. The structure of the TiO2 particles being of an amorphous nature and the nearly defect-free distributions of Ti4+ and O2- energy levels imply that the grain boundaries and surface trap sites were effectively suppressed. TiO2 particles were subsequently blended with the bichromophoric dye, AMIP, to study fluorescence decay dynamics between AMIP/TiO2 interfaces. Fluorescence lifetime measurements gave the rate constant for the charge-transfer process from the excited singlet of AMIP to the conduction band of TiO2 as 1.2×109 s?l. When PL quenching measured as the TiO2 contents of these composites reached a 2.5 wt% level, the maximum enhanced charge-transfer dynamics occurred. Structural properties and photophysical behaviors of composites of AMIP bound to TiO2 were extensively demonstrated.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

16.
17.
The structural and chemical characterization of Rh, Mo and Rh–Mo nanosized clusters formed by physical vapor deposition on TiO2 single crystal was performed by Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS) and Reflection Absorption Infrared Spectroscopy (RAIRS), applying CO as test molecule. On a slightly reduced titania surface 2D-like growth of Rh was revealed at 300 K up to 0.23 ML coverage by AES and CO-desorption experiments. For CO-saturated Rh particles TDS showed molecular CO desorption in a broad temperature range with Tp = 400, 440, 490 and 540 K (α-states), the latter state appearing only on the smallest Rh particles. The population of γ-state (Tp = 780–820 K) originating from the recombination of C and O atoms on the support began at ΘRh = 0.23ML and was maximized at around 1–2 ML Rh coverage, corresponding to 30% dissociation of CO. A possible dissociation precursor on Rh particles is identified as linearly bonded CO on step sites characterized by ν(C–O) of 2017 cm? 1. Deliberation of CO2 could not be detected between 170 and 900 K, showing the absence of disproportionation reaction. Instead of oxidizing CO molecules, oxygen atoms stemming from the dissociation of CO attached to the reduced centers of titania, indicating the role of adsorption sites at the perimeter of Rh particles in the decomposition process. 2 ML of predeposited Mo enhanced markedly the dispersion of Rh particles as a result of strong Rh–Mo interaction, but it slightly reduced the molecular α-CO desorption possibly due to enhanced dissociation. The formation of γ-CO was suppressed considerably through elimination of adsorption centers by Mo on the TiO2 substrate. The reactivity of Rh layers deposited on Mo-covered surface towards CO was reduced after repeated annealing to 600 K due to partial encapsulation of Rh by titania, manifesting in the suppression of the more strongly bonded α-state. Mo-deposits (up to 0.5ML) on Rh particles decreased the saturation coverage of α-CO through a site-blocking mechanism without detectable influence on the binding energy of CO to Rh, indicating Mo island formation. The carbon arising from the decomposition of CO dissolved in the Mo-containing particles formed a solid solution stable even at 900 K, suggesting a possible role of molybdenum carbide regarding the enhanced catalytic activity of Rh clusters.  相似文献   

18.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

19.
Nanostructured nickel ferrites (NiFe2O4) were prepared by doping with Ti4+ ions using solid-state reaction route. Lowest grain size of 55 nm was achieved in the specimens with 20 mole% TiO2 doping. Magnetization in the specimens decreases with decreasing grain sizes. Lower volume fractions of ferrite phase due to dissociation of the magnetic phase into smaller particles by the disruption of super exchange interaction by the titanium substitution results a decrease in magnetizations. Coercivity showed an increasing trend. This was explained as arising due to multidomain/monodomain magnetic behavior of magnetic nanoparticles. Small polaron hopping conduction between Fe2+ and Fe3+ sites controls the dc electrical properties of the specimens. The presence of an interfacial amorphous phase between the sites is evident from Mott's analysis. Specimens containing 10 mole or more TiO2 and sintered at 1350 °C contain NiTiO3 as a secondary phase and show unusual dc conductivity.  相似文献   

20.
The interaction of xenon atoms with the TiO2(1 1 0) surface of rutile has been studied by density functional theory methods. Five different possible adsorption sites on the relaxed and clean TiO2(1 1 0) surface and on two different type of oxygen vacancies possible on this oxide substrate have been considered. In the case of the defect-free substrate, and when compared with a previous study concerning the adsorption of Ar atoms also on TiO2(1 1 0), the xenon atom, as a larger and easier polarizable species, is shown to have a deeper physisorption well, as expected. Likewise, Xe atoms prefer to be bounded to positions nearby the outermost titanium atoms as found previously for Ar. This is in agreement with most studies concerning rare gases adsorbed on transition metal surfaces. In the case of the reduced surfaces, it is found that the interaction is more favourable in the protruding rows. The interaction is dominated by dispersion forces and DFT + dispersion energies are 3.5–5 times larger than the non-corrected DFT values and Xe-surface distances are smaller. Finally, an interesting correlation is obtained for the calculated interaction energies and the Xe–Ti distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号