首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of dimethyl methylphosphonate (DMMP) on crystalline ceria thin films grown on Ru(0 0 0 1) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and infrared absorption reflection spectroscopy (IRAS). TPD experiments show that methanol and formaldehyde desorb as the two main products at 575 K, while water, formaldehyde and CO are produced above 800 K. IRAS studies demonstrate that DMMP adsorbs via the phosphoryl oxygen at 200 K, but the PO bond converts to a bridging OPO species at 300 K. DMMP decomposition initially occurs via POCH3 bond scission to form methyl methylphosphonate (MMP) and methyl phosphonate (MP) between 300 and 500 K; XPS and IRAS data are consistent with a methoxy intermediate on the surface at these temperatures. The more stable PCH3 bonds remain intact up to 700 K, and the only surface intermediate at higher temperatures is believed to be POx. Although the presence of POx decreases activity for DMMP decomposition, some activity on the ceria surface remains even after 7 cycles of adsorption and reaction. The ceria films become reduced by multiple DMMP adsorption-reaction cycles, with the Ce+4 content dropping to 30% after seven cycles. Investigations of DMMP reaction on reduced ceria surfaces show that CO and H2 are produced in addition to methanol and formaldehyde. Furthermore, DMMP decomposition activity on the reduced ceria films is almost completely inhibited after only 3 adsorption-reaction cycles. Similarities between DMMP and methanol chemistry on the ceria films suggest that methoxy is a key surface intermediate in both reactions.  相似文献   

2.
A set of available experimental data on binding energies of Nb 3d5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1sNb 3d5/2) as a robust parameter for compound characterization. An empirical relationship between (O 1sNb 3d5/2) values measured with XPS for Nb5+-niobates and mean chemical bond length L(NbO) has been discussed. A range of (O 1sNb 3d5/2) values possible in Nb5+-niobates has been defined. An energy gap ∼1.4–1.8 eV is found between (O 1sNb 3d5/2) values reasonable for Nb5+ and Nb4+ states in niobates.  相似文献   

3.
The high-resolution infrared spectrum of N212C18O2 has been observed in the ν3 band (2314 cm?1) region of 12C18O2 with diode laser absorption spectroscopy of pulsed molecular beam. The geometry of N212C18O2 is similar to N212C16O2, a T-shaped structure with the nitrogen molecular axis pointing towards the carbon atom. The geometrical parameters of the T-shaped ground-state structure are determined as RNcmC = 3.7285(5) Å and (90?ΘNcmCO) = 6.85(3)°. The vibrational band origin of N212C18O2 corresponding to the ν3 mode of 12C18O2 shows a shift of 0.52499(10) cm?1 with respect to that of 12C18O2.  相似文献   

4.
《Solid State Ionics》2006,177(1-2):1-9
Oxygen re-equilibration kinetics, along with the equilibrium conductivity, have been measured on undoped, single-crystal TiO2−δ, by a four-probe d.c. conductivity relaxation technique, against oxygen partial pressure in the range of − 16 < log(PO2/atm)  0 at different temperatures in the range of 1173  T/K  1373. The isothermal conductivity varies as σ  PO2m with m   1/4, − 1/5 and − 1/6 in turn with increasing PO2 up to 1 atm, suggesting a sequential variation of the majority ionic disorder types from Tii to Tii to VO, respectively. Contrary to the conventional knowledge that due to the local (defect) equilibrium postulate there should be one and only one chemical diffusivity or single relaxation time for a binary oxide, the oxygen re-equilibration kinetics has turned out to be twofold with two different relaxation times depending on oxygen activities. This is interpreted as being due to the independent relaxation of each sublattice of TiO2 in an oxygen activity gradient applied, indicating a failure of local equilibrium during oxygen re-equilibration. From the two different relaxation times the chemical diffusion coefficients of component Ti and O are separately evaluated and subsequently, their self-diffusion coefficients. The latter are found to be in a good agreement with the literature data.  相似文献   

5.
There exists a problem with an in situ diagnostics of contamination of ethyl alcohol in a human being exhaled air. When ethyl alcohol in a mouth blowing (in a gaseous state) exists, the characteristic CH stretch absorption bands in CH3 and CH2 functional groups in ethanol (CH3CH2OH) appear at a wavelength of λ = 3.42 μm. To investigate the presence of ethyl alcohol in exhaled human air, the light beam of λ = 3.42 μm is passing through an air sample. If one alternately measures the intensity of the investigated beam and the reference, a percentage of ethanol in the air sample can be estimated using a sensitive nondispersive infrared (NDIR) system with a stable operating flow mass detector. To eliminate a mechanical chopper and noise generating stepper motors, a photonic chopper as a liquid crystal shutter for λ = 3.42 μm has been designed. For this purpose, an innovative infrared nematic liquid crystal mixture was intentionally prepared. The working mixture was obtained by a selective removal of CH bonds and its exchange by heavier polar substituents, what ensures a lack of absorption band of CH bonds. The paper presents theory, concept and final experimental results of the infrared nematic liquid crystals mixture and the liquid crystal shutter for breathalyzer applications.  相似文献   

6.
The thermal chemistry of allyl alcohol (CH2CHCH2OH) on a Ni(100) single-crystal surface was studied by the temperature programmed desorption (TPD) and the X-ray photoelectron spectroscopy (XPS). The allyl alcohol adsorbs molecularly on the metal surface at 100 K. Intact molecular desorption from the surface occurs at temperatures around 180 K, but some molecules exhibit chemical reactivity on the surface: activation of the OH, CC, and CO bonds produces η1(O)-allyloxy CH2CHCH2O(a), η2(C, C) allyl alcohol (C(a)H2C(a)HCH2OH), and η3(C, C, O)-alkoxide (C(a)H2C(a)CH2 O(a)) intermediates. Further thermal activation of allyl alcohol on the surface yields propylene (CH2CHCH3), 1-propanol (CH3CH2CH2OH), propanal (CH3CH2CHO), and combustion and dehydrogenation products (H2O, H2, and CO). Propylene desorbs from the surface at temperatures of around 270 K. Hydrogenation to the η3(C, C, O)-alkoxide intermediate leads to the production of propanal which desorbs from the surface around 320 K, while hydrogenation of the η2(C, C) allyl alcohol intermediate produces 1-propanol, which desorbs at around 310 K. The co-adsorption of hydrogen atoms on the surface enhances the formation of the saturated alcohol, while co-adsorption of oxygen enhances the formation of both the saturated alcohol and the saturated aldehydes.  相似文献   

7.
It was recently found that oxygen induces ordered reconstructions on several III–V surfaces. The most oxygen-rich reconstruction shows (3 × 1) periodicity. Based on first-principles investigations, a detailed atomic model is presented for this reconstruction. The uncommon periodicity is attributed to the highly stable InOIn trilayer below surface which also leads to stabilizing additional bonds within the surface layer. The strain induced by the trilayer is more effectively accommodated within the (3 × 1) reconstruction than within the competing (2 × 1) reconstruction due to smaller number of dimers. It is proposed that the experimentally found semiconductivity is reached by substitutional atoms within the surface layer. Suitable substitution preserves the magnitude of the bulk band gap.  相似文献   

8.
The chemisorption of water (H2O and D2O) on a LaB6(100) surface was studied with reflection absorption infrared spectroscopy (RAIRS) and high resolution electron energy loss spectroscopy (HREELS). The clean surface was exposed to H2O and D2O at temperatures from 90 K to room temperature, and spectra were acquired after heating to temperatures as high as 1200 K. It was found that water molecularly adsorbs on the surface at 90 K as a monomer at low coverages and as amorphous solid water at higher coverages. Water adsorbs dissociatively at room temperature to produce surface hydroxyl species as indicated by OH/OD stretch peaks at 3676/2701 cm?1. Room temperature adsorption also reveals low frequency loss features in HREEL spectra near 300 cm?1 that are quite similar to results obtained following the dissociative adsorption of O2. In the latter case, the loss features were attributed to the LaO stretch of O atoms bridge-bonded between two La atoms. In the case of dissociative adsorption of H2O, the low frequency loss features could be due to either the LaO vibrations of adsorbed O or of adsorbed OH.  相似文献   

9.
《Surface science》1995,327(3):L511-L514
This Letter describes a novel method of employing the phenomenon of oxygen chemisorption for atom discrimination in the SiGe surface termination layer. Formation of SiO species on clean Si(100) gives rise to peaks at 7 and 10.2 eV in He I UPS and a peak at 532.3 eV in O 1s XPS. Whereas GeO species on a Ge(100) surface exhibits a single peak at 5.2 eV in He I UPS and a peak at 531.3 eV in O 1s XPS. These signature spectra of SiO and GeO species have been effectively employed for atom discrimination in the termination layer of SiGe surfaces. Upon dosing at room temperature, on a sample prepared by depositing 5ÅGe on Si(100) at 550°C, oxygen bonds with Ge atoms forming GeO, exclusively. This indicates termination entirely by Ge atoms. Oxygen adsorption at room temperature, on a sample prepared by codeposition of Ge and Si (total 5Å) onto Si(100) at 550°C, forms a mixture of SiO and GeO species suggesting a surface termination by both Ge and Si atoms.  相似文献   

10.
We discuss an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer epitaxially grown on an InSb (100) substrate by low pressure metal organic chemical vapor deposition (MOCVD). Infrared absorption from the indium–hydrogen (InH) stretching mode at 1754.5 cm? 1 associated with a top most surface of an epitaxial InSb layer was used to compare varying levels of surface coverage with ErSb. Among four samples of varying coverage of ErSb deposition (7.2 to 21.5 monolayers), detected infrared absorption peaks distinct to InH weakened as ErSb surface coverage increased. In the early stage of ErSb deposition, our study suggests that outermost indium atoms in the InSb buffer layer are replaced by Er resulting in increase in absorption associated with the InH mode. Using this simple ex-situ technique, we show that it is possible to calibrate the amount of ErSb deposited atop each individual InSb substrate for depositions of few to tens of monolayers.  相似文献   

11.
A highly sensitive chemiluminescence (CL) method for the determination of nitrofurans (NFs) was developed based on the enhancement of CL intensity of luminol–H2O2–NFs system by silver nanoparticles (AgNPs). It was supposed that the oxygen-related radicals of OH and superoxide radical (O2?) could be produced when NFs reacted with H2O2. Furthermore, the enhancement mechanism was originated from the reinforcer of AgNPs, which could catalyze the generation of the OH radical. Then OH radicals reacted with luminol anion and HO2? to form luminol radical (L?) and O2?. The excited state 3-aminophthalate anion was obtained in the reaction of L? and O2?, which was the emitter (luminophor) in the luminol–H2O2 CL reaction system and the maximal emission of the CL spectrum was at 425 nm. The experiments of scavenging oxygen-related radicals were done to confirm these reactive oxygen species participated in the CL reaction. The limits of detection (LOD) (S/N=3) were 8×10?7 g mL?1 for furacilin, 8×10?8 g mL?1 for furantoin, 4×10?8 g mL?1 for furazolidone and 2×10?7 g mL?1 for furaltadone. The proposed method was successfully applied to the determination of NFs in feeds and pharmaceutical samples.  相似文献   

12.
The chemisorption of the allylamine molecule, which contains two functional groups (ethenyl and hydroxyl), on a Si(001) ? (2 × 1) surface was studied using density functional theory (ab-initio DFT) based on the pseudopotential approach. In particular, we focused on the determination of the most stable position of the CC double bond in the ethenyl group and observation of the passivation effect of allylamine on the electronic structure of the clean Si(001) ? (2 × 1) phase. For this purpose, all of the possible interaction mechanisms occurring at the interface were considered: (i) dissociative bonding where the CC bond is parallel to the silicon surface, (ii) dissociative bonding where the CC bond is perpendicular to the silicon surface, and (iii) the [2 + 2] CC cycloaddition reaction. From our total energy calculations, it was found that the bifunctional allylamine molecule attached to the Si(001) ? (2 × 1) surface through the amino functional group, by breaking the N–H bond and forming a Si–H bond and Si–NHCH2CHCH2 surface fragments. During this process, the ethenyl functional group remains intact, and so can be potentially used as an extra reactive site for additional chemical interactions. In addition to these findings, the nudged elastic band method (NEB) calculations related with the reaction paths showed that the parallel position of the CC bond with respect to the surface of the substrate is more favorable. In order to see the influence of the chemisorbed allylamine molecule on the surface states of the clean Si(001)  (2 × 1), we also plotted the density of states (DOS), in which it is seen that the clean Si(001)  (2 × 1) surface was passivated by the adsorption of allylamine.  相似文献   

13.
Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20–1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03–0.3 MPa) and liquid temperature (283–333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200 ± 200 K and pressure of about 250 ± 20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1925-1928
Nonstoichiometry of the perovskite-type solid solutions La0.9Ca0.1Cr1−yAlyO3−δ was studied by high-temperature gravimetry under controlled P(O2) atmospheres of 1–10 23 bar at 1073–1273 K. The observed data were described by a regular solution-like model for the randomly distributed defects of VO¨, CrCr., CaLa,, and AlCrX. With the increase in y, VO¨ formation becomes much easier. For y > 0.8, some fraction of CaLa, becomes surrounded only by AlCrX and VO¨ remains around such CaLa, up to high P(O2) to reduce the maximum oxygen content below 3.000.  相似文献   

15.
Using 2,3-pyrazine dicarboxylate (pzdc2?) as ligand, a series of new terbium complexes Tb2L2(HL)(NO3)10 H2O, Tb2Mg2L4(HL)(NO3)14 H2O, Tb2Ca2L4(HL)(NO3)14 H2O, Tb2Sr2L4(HL)(NO3)14 H2O, Tb2Ba2L4(HL)(NO3)14 H2O, Tb2Cd2L4(HL)(NO3)14 H2O, Tb2Co2L4(HL)(NO3)14 H2O, Tb2Ni2L4(HL)(NO3)14 H2O and Tb2Zn2L4(HL)(NO3)14 H2O (L=pzdc2-) have been synthesized. The complexes were characterized by elemental analysis, ICP-AES, molar conductivity measurement, TG-DSC analysis, IR spectroscopy and UV absorption spectroscopy. The luminescence spectra, luminescence lifetimes and emission quantum efficiencies of the complexes were measured. The results show that doping alkaline earth metal ions have significantly increased the luminescence intensities and quantum efficiencies of the complexes, and the sequence of the quantum efficiencies of the doped complexes is Ba2+>Ca2+>Mg2+>Sr2+. The enhancement of luminescence efficiencies may result from the decrease of the concentration quenching effect of Tb3+ ions, intramolecular energy transfer from the ligands coordinated with doped ions to Tb3+ ions and the lattice distortion of the complexes. The luminescence efficiencies of the Tb3+ ions are also enhanced by doping Cd2+ and Zn2+ ions. However, the complexes doped with Co2+ or Ni2+ ions exhibit luminescence quenching, which is caused by the energy consumed by these two ions in the form of d-d electron transitions.  相似文献   

16.
Gold clusters supported on TiO2(110) exhibit unusual activity for the oxidation of methanol to formaldehyde. Temperature programmed desorption studies of methanol on Au clusters show that both Au and titania sites are necessary for methanol reaction. Isotopic labeling experiments with CD3OH demonstrate that reaction occurs via OH bond scission to form a methoxy intermediate. When the TiO2 surface is oxidized with 18O2 before or after Au deposition, methanol reaction produces H218O below 300 K, indicating that oxygen from titania promotes OH bond scission and is incorporated into desorbing products. XPS experiments provide additional evidence that during methanol reaction on the Au/TiO2 surface, methanol adsorption occurs on TiO2, given that the titania support becomes slightly oxidized after exposure to methanol in the presence of Au clusters. While the role of TiO2 is to dissociate the OH bond and form the reactive methoxy intermediate, the role of the Au sites is to remove hydrogen from the surface as H2, thus preventing the recombination of methoxy and hydrogen to methanol. The decrease in formaldehyde yield with increasing Au coverage above 0.25 ML suggests that reaction occurs at Au–titania interfacial sites; scanning tunneling microscopy images of various Au coverages confirm that the number of interfacial sites at the perimeter of the Au clusters decreases as the Au coverage is increased between 0.25 and 5 ML.  相似文献   

17.
《Current Applied Physics》2010,10(4):1211-1215
Artificial ageing of high density polyethylene (HDPE) exposed to ultra-violet irradiation has been investigated by fluorescence spectroscopy. In the case of HDPE, fluorescence spectroscopy requires the addition of fluorophore, (rhodamine 101 laser dye). The spectral features of fluorescence are very sensitive to the interaction between the exited molecules and the polymer matrix. Under wavelength close to 254 nm, the diffusion of oxygen can introduce groups such as CO, CO and C(O)O into the molecular chains. Thus entail structural and chemical modifications such as polymeric chain breaking, cross linking and oxidation. In the present work, we clearly illustrate the fact that fluorescence spectroscopy is very worthwhile in particular to follow the early stages of photo-degradation.  相似文献   

18.
A rapid and efficient treatment method, using periodate (PI) for sonochemical oxidation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) was developed. With an addition of 45 mM PI, 96.5% of PFOA was decomposed with a defluorination efficiency of 95.7% after 120 min of ultrasound (US). The removals of PFOA were augmented with an increase in PI doses. In all the PI + US experimental runs, decomposition efficiencies were essentially similar to those of defluorination, indicating that PFOA was decomposed and mineralized into fluoride ions. Lower solution pHs resulted in an increase in decomposition and defluorination efficiencies of PFOA due to acid-catalyzation. Dissolved oxygen increased the amount of IO4 radicals produced, which consumed the more effective IO3 radicals. Consequently, presence of oxygen inhibited the destruction of PFOA. The PFOA degradation rates with different gases sparging are in the following order: nitrogen > air > oxygen. Effects of anions follow the Hofmeister effects on PFOA degradation (i.e., Br > none  Cl > SO42). Br could react with OH to yield radical anion Br2 that enhances the PFOA degradation. A reaction pathway was also proposed to describe the PI oxidation of PFOA under US irradiation.  相似文献   

19.
《Current Applied Physics》2010,10(4):1236-1241
In this paper, we report the synthesis, growth and characterization of a new organic NLO single crystal of NMPMN (N′-[(Z)-(4-methylphenyl)methylidene]-4-nitrobenzohydrazide), for the first time. The single crystal was grown by slow evaporation method at room temperature. The cell dimensions obtained by single crystal XRD studies reveal that the crystal belongs to triclinic system. It was characterized by different techniques like powder XRD, UV, FTIR, TGA and DSC. The Knoop microhardness test was carried out to measure the mechanical strength of the crystal. Its refractive index was determined by the Brewster’s angle method. The laser damage threshold studies have been carried out for the crystal using a Q-switched Nd:YAG laser of ns pulses at a wavelength of 532 nm. The Kurtz Powder Second Harmonic Generation revealed that the SHG efficiency of the grown crystal is about 50% that of KDP and is found to be phase matchable. The intermolecular OH⋯O, OH⋯N and CH⋯O hydrogen bonds and a ππ stacking interaction between the nitrobenzene and tolyl rings helps to create a delicate balance between the molecular and supramolecular charge transfer processes by creating a noncentrosymmetric structure.  相似文献   

20.
The growth, structures, and vibrational properties of ultrathin manganese oxide films on Rh(111) had been investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEIS) and Auger electron spectroscopy (AES). MnOx grew in a layer-by-layer fashion on the Rh(111) surface. HREELS phonon features and XPS binding energies showed that an OMnO like tri-layer formed initially. Which was stable on the Rh(111) surface with MnOx coverage less than one monolayer. At above one monolayer, Mn3O4 was preferred as indicated from a four-phonon feature peaked at 13.3, 39, 68 and 83 meV in HREELS. Higher temperature oxidation and annealing were found to improve the long-range order of the MnOx films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号