首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper reviews transmission electron microscopy studies, combining high resolution imaging and electron energy loss spectroscopy, of the nucleation and growth of carbon single wall nanotubes with a particular emphasis on the nanotubes obtained from the evaporation-based elaboration techniques. Inspection of samples obtained from different synthesis routes shows that in all cases nanotubes are found to emerge from catalyst particles and that they have grown perpendicular or parallel to the surface according to whether they have been synthesized via evaporation-based methods or CCVD methods. Whereas the latter case corresponds to the well-known situation of carbon filaments growth, the former case strongly suggests another formation and growth process, which is described and its different steps discussed in detail. In this model, formation of the nanotubes proceeds via solvation of carbon into liquid metal droplets, followed by precipitation, at the surface of the particles, of excess carbon in the form of nanotubes through a nucleation and root growth process. It is argued that the nucleation of the nanotubes, which compete with the formation of graphene sheets wrapping the surface of the particle, necessarily results from a surface instability induced by the conditions of segregation. The nature and the origin of this instability was studied in the case of the class of catalyst Ni–R.E. (R.E.=Y, La, Ce, …) in order to identify the influence of the nature of the catalyst. The respective roles played by Ni and R.E. have been identified. It is shown that carbon and rear-earth co-segregate and self-assemble at the surface of the particle in order to form a surface layer destabilizing the formation of graphene sheets and providing nucleation sites for nanotubes growing perpendicular to the surface. To cite this article: A. Loiseau et al., C. R. Physique 4 (2003).  相似文献   

2.
The thermally controlled synthesis of graphene from propylene molecules on the Ni(111) surface in ultrahigh vacuum is studied by scanning tunneling microscopy and density functional theory. It is established that the adsorption of propylene on Ni(111) atomic terraces at room temperature results in the dehydration of propylene molecules with the formation of single-atomic carbon chains and in the complete dissociation of propylene at the edges of atomic steps with the subsequent diffusion of carbon atoms below the surface. The annealing of such a sample at 500°С leads to the formation of multilayer graphene islands both from surface atomic chains and by the segregation of carbon atoms collected in the upper nickel atomic layers. The process of formation of an epitaxial graphene monolayer until the complete filling of the nickel surface is controllably observed. Atomic defects seen on the graphene surface are interpreted as individual nickel atoms incorporated into graphene mono- or bivacancies.  相似文献   

3.
《Comptes Rendus Physique》2012,13(3):268-279
The mechanical properties of metals strongly depend on the microstructure, which is formed during their production and processing. Understanding the underlying mechanisms of the nucleation and growth kinetics during solid-state phase transformations in steel is of vital importance to control its microstructure. The kinetics of individual grains in the bulk of steel can be measured in situ with the three-dimensional X-ray diffraction microscopy (3DXRD) at the European synchrotron radiation facility (ESRF). Simultaneously the fraction transformed, the nucleation rate, and the growth rate of individual grains can be measured. Unique in situ measurements of nucleation and growth rates of individual austenite and ferrite grains are presented.  相似文献   

4.
Graphene films are grown in open-atmosphere on metal substrates using a multiple inverse-diffusion flame burner with methane as fuel. Substrate material (i.e. copper, nickel, cobalt, iron, and copper–nickel alloy), along with its temperature and hydrogen treatment, strongly impacts the quality and uniformity of the graphene films. The growth of few-layer graphene (FLG) occurs in the temperature range 750–950 °C for copper and 600–850 °C for nickel and cobalt. For iron, the growth of graphene is not exclusively observed. The variation of graphene quality for different substrates is believed to be due primarily to the difference in carbon solubility between the metals.  相似文献   

5.
CdTe–TiO2–graphene nanocomposites were successfully synthesized via a simple and relatively general hydrothermal method. During the hydrothermal environment, GO was reduced to reduced graphene oxide (RGO), accompanying with the anchoring of TiO2 nanoparticles on the surface of RGO. In the following process, CdTe quantum dots (QDs) were then in situ grown on the carbon basal planes. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and fluorescent spectroscopy. It is hoped that our current work could pave a way towards the fabrication of QDs–TiO2–RGO hybrid materials.  相似文献   

6.
The epitaxial growth of graphene by the sublimation of Si-terminated silicon carbide (SiC) is studied inside a graphite enclosure in a radio-frequency furnace by comparing different in situ processes involving hydrogen etching or not and different growth conditions. For the growth under vacuum, even with the surface preparation of hydrogen etching, the morphology of the synthesized graphene is found full of voids and defects in the form of a multilayer graphene film. For the growth under Ar, the hydrogen etching plays a vital role to improve the graphene quality in terms of surface roughness, the number of graphene layers and the domain size. For the graphene samples grown with the proposed protocol, the original combination of micro-probe Raman spectroscopy and simultaneous optical transmission and reflection measurements reveals a detailed spatially resolved image of the graphene domains with monolayer domain size of ~5×5 µm2 on about 2/3 of the total sample surface. The magnetotransport data yield charge-carrier mobilities up to 2900 cm2/Vs as found for high quality graphene on the Si-face of SiC. The observed magnetoquantum oscillations in the magnetoresistance confirm the expected behavior of single-layer graphene.  相似文献   

7.
We synthesize hexagonal shaped single-crystal graphene, with edges parallel to the zig-zag orientations, by ambient pressure CVD on polycrystalline Cu foils. We measure the electronic properties of such grains as well as of individual graphene grain boundaries, formed when two grains merged during the growth. The grain boundaries are visualized using Raman mapping of the D band intensity, and we show that individual boundaries between coalesced grains impede electrical transport in graphene and induce prominent weak localization, indicative of intervalley scattering in graphene.  相似文献   

8.

The ab initio calculations of the electronic structure of low-dimensional graphene–iron–nickel and graphene–silicon–iron systems were carried out using the density functional theory. For the graphene–Fe–Ni(111) system, band structures for different spin projections and total densities of valence electrons are determined. The energy position of the Dirac cone caused by the p z states of graphene depends weakly on the number of iron layers intercalated into the interlayer gap between nickel and graphene. For the graphene–Si–Fe(111) system, the most advantageous positions of silicon atoms on iron are determined. The intercalation of silicon under graphene leads to a sharp decrease in the interaction of carbon atoms with the substrate and largely restores the electronic properties of free graphene.

  相似文献   

9.
The growth of multiwalled carbon nanotubes (MWNTs) was successfully achieved in the channels of three dimensional (3D) iron loaded mesoporous matrices (KIT-6) by employing catalytic chemical vapour deposition (CCVD) technique. The synthesised MWNTs, which were characterised by SEM, TEM and Raman spectroscopy, consist of thick graphene layers of about 10 nm composed of 29 graphene sheets with inner and outer diameter of ∼17 nm and ∼37 nm, respectively. The Raman spectrum showed the formation of well-graphitised MWNTs with significantly higher IG/ID ratio of 1.47 compared to commercial MWNTs. Comparatively, 2 wt% Fe loaded KIT-6 material produced a better yield of 91%, which is also highest compared with the report of MWNTs synthesis using mesoporous materials reported so far.  相似文献   

10.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

11.
The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. In this study, we demonstrate a dual role of hydrogen for the graphene growth on copper using an inductively coupled plasma (ICP) CVD. Hydrogen activates surface-bound carbon for the growth of high-quality monolayer graphene. In contrast, the role of an etchant is to manipulate the distribution of the graphene grains, which significantly depends on the plasma power. Atomic-resolution transmission electron microscopy study enables the mapping of graphene grains, which uncovers the distribution of grains and the number of graphene layers depending on the plasma power. In addition, the variation of electronic properties of the synthesized graphene relies on the plasma power.  相似文献   

12.
选取了一个典型的金属碳化物体系Mo2C对其形成在石墨烯生长中的作用进行了基于第一性原理的理论研究. 碳在Mo2C体相中扩散十分困难,而在Mo2C(001)表面则变得比较容易. 因此抑制碳析出和表面石墨烯生长可以同时实现. 在Mo2C(101)表面碳扩散的难易程度依赖于扩散方向. 相对于(001)表面,(101) 表面不利于石墨烯生长.  相似文献   

13.
InGaAs layers on undoped GaAs (0 0 1) substrates were grown by atmospheric pressure metalorganic vapour phase epitaxy (AP-MOVPE). In order to obtain films with different indium composition (xIn), the growth temperature as a growth parameter, was varied from 420 to 680 °C. Furthermore, high-resolution X-ray diffraction (HRXRD) measurements were used to quantify the change of xIn. Crystal quality has been also studied as a function of growth conditions. On the other hand, laser reflectometry (LR) at 632.8 nm wavelength, was employed to in situ monitor epitaxy. Reflectivity-time signal was enabled to evaluate structural and optical properties of samples. We have fitted experimental data to determine optical constants and growth rate of InGaAs at 632.8 nm. In addition, the fitting provided InGaAs thickness as a function of growth time. Based on ex situ characterization by scanning electronic microscopy (SEM) and HRXRD, we propose a practical method, relating the contrast of first reflectivity maximum with the X-ray diffraction peak angular difference between the substrate and epitaxial layer, to determine in situ the In solid composition in InGaAs alloys.  相似文献   

14.
Photon-energy dependent photoemission experiments using high harmonic radiation as a tunable photon source on epitaxially grown graphene on a Ni(111) substrate are presented. A resonance in the photoemission cross section for the σ and π states of graphene was observed and compared to a simple model for the determination of photoemission cross sections of free standing graphene, pointing out the role of the interaction of graphene with the nickel substrate.  相似文献   

15.
This study concentrated on producing anticorrosive coating depending on alkyd resin blended with polyaniline-carbon allotropes composites as filler. Polyaniline (PANI) and its composites were produced by doping of PANI with the carbon allotropes (graphene and multi-walled carbon nanotubes) and carbon-oxide allotropes (graphene oxide and multi-walled carbon nanotubes oxide) in different ratios through in situ chemical polymerization. The morphology of PANI and its composites were examined by transmission electron microscope (TEM), which proved that PANI composites appeared as a shell layer in core/shell structure with various overlay thickness depending on the adsorption type for polyaniline. The performance of the prepared coatings in cabinet salt agrees with electrical conductivity values where the best PANI/composite in conductivity value is the most efficient as an anti-corrosive coating.  相似文献   

16.
The behavior of a nickel film on two-layer graphene in the temperature range 300 K ≤ T ≤ 3300 K has been investigated using the molecular dynamics method. The kinetic, structural, and mechanical properties of this film have been compared with the corresponding characteristics of a similar nickel film on single-layer graphene. It has been shown that the second layer of heated graphene plays a stabilizing role in retaining the hexagonal cellular structure of the graphene layer contacting with the metal.  相似文献   

17.
Solving the shuttle effect caused by lithium polysulfide (LPS) dissolution is important in lithium−sulfur batteries. The anchoring of LPSs to carbon combined with sulfur is a method of suppressing the shuttle effect. This first-principles study is the first to report that amorphous carbon offers the best ability to anchor LPSs. The adsorption energies of LPSs on amorphous carbon are at least six times higher than those on graphene and at least two times higher than those on pyridinic-N doped graphene. The LPSs adsorbed on amorphous carbon undergo significant molecular distortion and/or partial dissociation due to the S-to-C electron transfer of 1.2–1.8 e per molecule, as well as the formation of strong bonds between both the Li and S atoms and the sp- and sp2-site C atoms. We propose an amorphous carbon−graphite hybrid anchoring material, because amorphous carbon can strongly capture LPSs and graphite can act as an electron channel.  相似文献   

18.
Dc plasma-enhanced CVD growth of nanotubes and nanofibres is studied as a function of plasma power (3–40 W). The dependence of the nanotube/nanofibre morphology for growth on thin iron films and lithographically prepared individual nickel dots is investigated. In both cases, large differences in the morphology of the carbon nanostructures are observed as the plasma power is changed. In situ optical emission spectroscopy is used to obtain insight into the important parameters affecting the growth. The best growth results are found for intermediate plasma powers (15 W). PACS 81.07.-b; 52.70.Kz  相似文献   

19.
Growth of pentacene (Pn) thin films has been studied in situ by means of low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). A very low nucleation density of Pn grains has been observed on Bi(0 0 0 1)/Si(1 1 1) template, resulting in formation of large, monolayer-high Pn grains with diameter exceeding several hundreds of micrometers. We determined that formation of self-organized, standing-up Pn epitaxial layers was stabilized by a weak interaction between the substrate and Pn molecules and by the presence of the commensurate structure between the oblique Pn lattice and trigonal substrate surface lattice. The ‘point-on-line’ commensurability has been found along a-axis of Pn and one of the primitive vectors of substrate surface lattice. Strong ‘point-on-line’ commensurability in Pn/Bi(0 0 0 1)/Si(1 1 1) system resulted in a bulk-like epitaxial thin film growth, starting from the first layer. The presence of twins, often having a mirror line parallel to the direction of the ‘point-on-line’ matching, has been also detected using an asymmetric dark-field imaging mode in LEEM experiments, which, we believe, is the first LEEM demonstration of molecular tilt imaging.  相似文献   

20.
This study reports the Raman analysis of bilayer graphene films prepared on commercial dilute Cu(0.5 at% Ni) foils using atmospheric pressure chemical vapor deposition. A bilayer graphene film obtained on Cu foil is known to have small areas of bilayer (islands) with a significant fraction of non‐Bernal stacking, while that obtained on Cu/Ni is known to grow over a large area with Bernal stacking. In the Raman optical microscope images, a wafer‐scale monolayer and large‐area bilayer graphene films were distinguished and confirmed with Raman spectra intensities ratios of 2D to G peaks. The large‐area part of bilayer graphene film obtained was assisted by Ni surface segregation because Ni has higher methane decomposition rate and carbon solubility compared with Cu. The Raman data suggest a Bernal stacking order in the prepared bilayer graphene film. A four‐point probe sheet resistance of graphene films confirmed a bilayer graphene film sheet resistance distinguished from that of monolayer graphene. A relatively higher Ni surface concentration in Cu(0.5 at% Ni) foil was confirmed with time‐of‐flight secondary ion mass spectrometry. The inhomogeneous distribution of Ni in a foil and the diverse crystallographic surface of a foil (confirmed with proton‐induced X‐ray emission and electron backscatter diffraction, respectively) could be a reason for incomplete wafer‐scale bilayer graphene film. The Ni surface segregation in dilute Cu(0.5 at% Ni) foil has a potential to impact on atmospheric pressure chemical vapor deposition growth of large‐area bilayer graphene film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号