首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Fukaya  I. Matsuda  R. Yukawa  A. Kawasuso 《Surface science》2012,606(23-24):1918-1921
We have investigated the Si(111)-√21 × √21-(Ag, Cs) superstructure using reflection high-energy positron diffraction. Rocking curve analysis based on the dynamical diffraction theory reveals that Cs atoms are located at a height of 3.04 Å above the underlying √3 × √3-Ag structure and that they form a triangular structure with a side length of 10.12 Å. The structure of the Si(111)-√21 × √21-(Ag, Cs) surface is significantly different from those of the Si(111)-√21 × √21-Ag and Si(111)-√21 × √21-(Ag, Au) surfaces, probably because of the different electronic structures of the alkali and noble metal atoms.  相似文献   

2.
Optical second harmonic generation spectra have been experimentally obtained from a clean Si(111) 7 × 7 in two different polarization configurations isolating the rotational anisotropic and isotropic contributions. The energy of the fundamental photon is varied from 0.8 eV to 2.5 eV. For comparison, we also use a microscopic formulation based on the semi-empirical tight binding method to evaluate the nonlinear surface susceptibility tensor χ(2ω). Good agreement between theory and experiment is obtained with respect to the number of resonances, their position in energy, and surface or bulk character.  相似文献   

3.
《Surface science》1993,296(2):L21-L26
The room temperature (RT) adsorption of ammonia (NH3) on Si(111)√3 × √3-Al and Si(111)√3 × √3-Ag surfaces has been studied using LEED and AES. The transformation from Si(111)√3 × √3-Al surface structure to Si(111)1 × 1-(Al, H) upon NH3 exposure has been found to be similar to the previously observed structural transformation induced by exposure in the atomic hydrogen. It has been demonstrated that the transformation is caused by hydrogen atoms which are generated by NH3 dissociation on the Si(111)√3 × √3-Al surface. It has been estimated that about 0.1 ML of ammonia molecules is needed to complete the structural transformation. No interaction of NH3 with the Si(111)√3 × √3-Ag surface has been found. The dissociation of NH3 molecules is believed to be impossible on this surface  相似文献   

4.
Angle-resolved photoemission spectroscopy experiments show that the electronic structure of a Ag(111) film grown on Si(111) is markedly perturbed by the formation of a √3 × √3-Ag(2)Bi Rashba-type surface alloy. Four spin-split surface states, with different band dispersions and energy contours, intercept and hybridize selectively with the sp-derived quantum well states of the Ag layer. Detailed two-dimensional band mapping of the system was carried out and constant energy contours at different energies result in hexagonal-, star- and flower-like distortions of the quantum well states as a result of various interactions. Further wavy-like modulations of the electronic structure of the film are found to originate from umklapp reflections of the Ag film states according to the surface periodicity.  相似文献   

5.
Using the experimental data obtained mainly with the scanning tunneling microscopy observations, density functional theory calculations have been applied to examine an atomic structure of the Ag/Si(100)-c(6 × 2) reconstruction. A set of structural models has been proposed having a similar Si(100) substrate reconstruction which incorporates rows of top Si atom dimers and troughs in between the rows. Stability of about twenty models with various Ag coverage ranging from 1/6 to 1 ML has been tested, that allows reducing the number of plausible models to four. Two of these four models have been attributed to the “regular” intrinsic Ag/Si(100)-c(6 × 2) reconstruction, while the other two to its defect-induced modification. The latter is observed in the local areas near defects and domain boundaries and exhibits 3 × 2 periodicity. Comparing the results of calculations with the experimental STM images, it has been concluded that while the Si(100) substrate reconstruction is solid, the Ag subsystem is flexible due to the presence of the lightly bonded mobile Ag atoms.  相似文献   

6.
Wei Jie Ong  Eng Soon Tok 《Surface science》2012,606(13-14):1037-1044
Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered “1 × 1” to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 ? similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between “disordered 1 × 1” and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.  相似文献   

7.
The chemisorption of the allylamine molecule, which contains two functional groups (ethenyl and hydroxyl), on a Si(001) ? (2 × 1) surface was studied using density functional theory (ab-initio DFT) based on the pseudopotential approach. In particular, we focused on the determination of the most stable position of the CC double bond in the ethenyl group and observation of the passivation effect of allylamine on the electronic structure of the clean Si(001) ? (2 × 1) phase. For this purpose, all of the possible interaction mechanisms occurring at the interface were considered: (i) dissociative bonding where the CC bond is parallel to the silicon surface, (ii) dissociative bonding where the CC bond is perpendicular to the silicon surface, and (iii) the [2 + 2] CC cycloaddition reaction. From our total energy calculations, it was found that the bifunctional allylamine molecule attached to the Si(001) ? (2 × 1) surface through the amino functional group, by breaking the N–H bond and forming a Si–H bond and Si–NHCH2CHCH2 surface fragments. During this process, the ethenyl functional group remains intact, and so can be potentially used as an extra reactive site for additional chemical interactions. In addition to these findings, the nudged elastic band method (NEB) calculations related with the reaction paths showed that the parallel position of the CC bond with respect to the surface of the substrate is more favorable. In order to see the influence of the chemisorbed allylamine molecule on the surface states of the clean Si(001)  (2 × 1), we also plotted the density of states (DOS), in which it is seen that the clean Si(001)  (2 × 1) surface was passivated by the adsorption of allylamine.  相似文献   

8.
The atomic structure and the saturation coverage of Cs on the Si(0 0 1)(2×1) surface at room temperature have been studied by coaxial impact collision ion scattering spectroscopy (CAICISS). For the atomic structure of saturated Cs/Si(0 0 1)(2×1) surface, it is found that Cs atoms occupy a single adsorption site at T3 on the Si(0 0 1) surface. The height of Cs atoms adsorbed at T3 site is 3.18±0.05 Å from the second layer of Si(0 0 1)(2×1) surface. The saturation coverage estimated from the measured CAICISS intensity ratio and the proposed atomic structure is found to be 0.46±0.06 ML.  相似文献   

9.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

10.
The atomic structures and the formation processes of the Ga- and As-rich (2×2) reconstructions on GaAs(111)A have been studied. The Ga-rich (2×2) structure is formed by heating the As-rich (2×2) phase, but the reverse change hardly occurs by cooling the Ga-rich surface under the As2 flux. Only when the Ga-rich (2×2) surface covered with amorphous As layers was thermally annealed, the As-rich (2×2) surface is formed. The As-rich (2×2) surface consists of As trimers located at a fourfold atop site of the outermost Ga layer, in which the rest-site Ga atom is replaced by the As atom.  相似文献   

11.
12.
《Surface science》1995,330(2):L673-L677
A characteristic feature of the Si(111) (√3 × √3)R30°-Au surface is an intrinsically high density of domain walls. Combining the complementary strengths of scanning tunneling microscopy and X-ray standing waves it was possible to resolve the atomic structure of the domain walls and the Si(111) (√3 × √3)R30°-Au domains. A detailed structural model for the domain walls is presented and compared to the experimental results. The model involves the coexistence of two kinds of Au trimers with different registries and a separation of 0.5 Å normal to the (111) planes.  相似文献   

13.
Fullerene (C60) molecules on an Si(111)-(7 × 7) surface have been investigated using non-contact scanning non-linear dielectric microscopy (NC-SNDM) under an ultra-high vacuum. The topography, the interface between the C60 molecule and Si adatoms, and the internal structure of the C60 molecules were successfully investigated. For ~ 0 ML and ~ 0.4 ML coverage, both phase reversal sites and sites without phase reversal could be observed in the first order phase (θ1) image. On the other hand, for 1 ML coverage, phase reversal could not be identified. These results indicate that charge transfer only occurred from Si adatoms to C60 molecules at three-fold symmetric sites on the Si(111)-(7 × 7) surface, and the electric dipole moment is reflected in the electronic state of the C60 molecules. The internal structure of C60 molecules was clearly observed in topography by the second order amplitude (A2) feedback signal for 1 ML coverage, reflecting the LDOS originating from the t1u orbital.  相似文献   

14.
Surface structures of self-assembled methylthiolate and ethylthiolate monolayers on Au(111) have been imaged with STM. For saturation coverage of 0.33 ML at room temperature, the well-known (√3 × √3)R30° phase routinely observed for longer chain alkanethiolates does not appear under any conditions for adsorbed methylthiolate and ethylthiolate. Instead, both thiolate species organize themselves into a well-ordered 3 × 4 structure. We thus conclude that the stable structure for saturation coverage of methylthiolate/ethylthiolate on Au(111) at RT is 3 × 4, not (√3 × √3)R30° as generally believed. For coverage less than 0.33 ML, a striped-phase with short-range order is observed for methylthiolate. Fourier transform of the STM image from the striped-phase produces a clear (√3 × √3)R30° “diffraction” pattern. This strongly indicates that the (√3 × √3)R30° diffraction pattern for methylthiolate monolayers reported in literature is likely from the striped-phase, rather than from a true (√3 × √3)R30° lattice in real space. Consequently, theoretical modeling that reproduces the (√3 × √3)R30° structure for methylthiolate monolayers should be re-examined.  相似文献   

15.
The adsorption of the small amounts of tantalum on Si (111)-7 × 7 reconstructed surface is investigated systematically using scanning tunneling microscopy and tunneling spectroscopy combined with first-principles density functional theory calculations. We find out that the moderate annealing of the Ta covered surface results in the formation of clusters of the butterfly-like shape. The clusters are sporadically distributed over the surface and their density is metal coverage dependent. Filled and empty state STM images of the clusters differ strongly suggesting the existence of covalent bonds within the cluster. Tunneling spectroscopy measurements reveal small energy gap, showing semiconductor-like behavior of the constituent atoms. The cluster model based on experimental images and theoretical calculations has been proposed and discussed. Presented results show that Ta joins the family of adsorbates, that are known to form magic clusters on Si (111)-7 × 7, but its magic cluster has the structural and electronic properties that are different from those reported before.  相似文献   

16.
In view of understanding silicon incorporation in the δ doping process of GaAs (0 0 1), Si atoms have been deposited, under UHV, on a α(2 × 4) arsenic terminated substrate. In the low coverage regime, a transition to a less As rich (3 × 2) reconstructed Si–GaAs (0 0 1) surface was observed whose atomic structure has been investigated by grazing incidence X-ray diffraction performed in situ. Silicon is found to occupy not only a Ga substitutional site, precursor of a donor dopant but also to form nuclei for neutral clusters, on a template made by the (3 × 2) GaAs (0 0 1) reconstructed surface observed by Martrou et al. [Phys. Rev. B 72 (2005) 241307®]. The maximum surface concentration of donor-like silicon is estimated at 1.04 × 1014 cm?2 (1/6th monolayer).  相似文献   

17.
Using first-principles density-functional calculations, we investigate the growth mechanism of allyl alcohol (ALA) line on the H-terminated Si(100)-(2 × 1) surface. Unlike the allyl mercaptan (CH2 = CH ? CH2 ? SH) line, which was observed to grow across the Si dimer rows, we find that ALA (CH2 = CH ? CH2 ? OH) has the line growth along the Si dimer row. The self-assembled growth of ALA line occurs via the radical chain reaction mechanism, similar to the case of a typical alkene molecule, styrene. Our calculated energy profile along the reaction pathway shows that the different growth direction of ALA line compared with that of allyl mercaptan line is ascribed to the great instability of the oxygen radical intermediate, which prevents the line growth across the dimer rows.  相似文献   

18.
The interaction of O2 and CO2 with the Si(111)-7 × 7 surface has been studied with X-ray photoelectron spectroscopy (XPS). It was found that both O2 and CO2 molecules can readily oxidize the Si(111)-7 × 7 surface to form thin oxide films. Two oxygen species were identified in the oxide film: oxygen atoms binding to on-top sites of adatom/rest atoms with an O 1s binding energy of ~ 533 eV as well as to bridge sites of adatom/rest atom backbonds at ~ 532 eV. These two oxygen species can be interconverted thermally during the annealing process. Due to the low oxidation capability, the silicon oxide film formed by CO2 has a lower O/Si ratio than that of O2.  相似文献   

19.
Continuous-time photoelectron spectroscopy (PES) and photon-exposure-dependent photon-stimulated desorption (PSD) were employed to investigate the monochromatic soft X-ray-induced dissociation of SF6 molecules adsorbed on Si(111)-7 × 7 at 30 K (SF6 dose = 3.4 × 1013 molecules/cm2, ~ 0.5 monolayer). The photon-induced evolution of adsorbed SF6 was monitored at photon energies of 98 and 120 eV [near the Si(2p) edge], and sequential valence-level PES spectra made it possible to deduce the photolysis cross section as a function of energy. It was found that the photolysis cross sections for 98 and 120 eV photons are ~ 2.7 × 10? 17 and ~ 3.7 × 10?17 cm2, respectively. The changes in the F? and F+ PSD ion yields were also measured during irradiation of 120 eV photons. The photon-exposure dependencies of the F? and F+ ion yields show the characteristics: (a) the dissociation of adsorbed SF6 molecules is ascribable to the substrate-mediated dissociations [dissociative attachment (DA) and dipolar dissociation (DD) induced by the photoelectrons emitting from the silicon substrate]; (b) at early stages of photolysis, the F? yield is mainly due to DA and DD of the adsorbed SF6 molecules, while at high photon exposure the F? formation by electron capture of the F+ ion is likely to be the dominant mechanism; (c) the F+ ion desorption is associated with the bond breaking of the surface SiF species; (d) the surface SiF is formed by reaction of the surface Si atom with the fluorine atom or F? ion produced by scission of S–F bond of SFn (n = 1–6) species.  相似文献   

20.
为了确定Si(111)-√7×√3-In表面的结构以及理解其电子性质,构建了六角型和矩形型的六种模型,并进行了第一性原理计算.通过模拟这些模型的扫描隧道显微镜图像,计算了功函数,并和实验结果进行了比较.发现hex-H3'模型和rect-T1模型分别为实验中的六角型和矩形型结构.同时还讨论了In覆盖度在1.0单层附近时In/Si(111)表面结构的演化机制.认为4×1相和√7×√3相具有两种不同的演化机制,和实验结果一致  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号