首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dinuclear gold(I)-N-heterocyclic carbene complexes were developed for the hydrohydrazidation of terminal alkynes. The gold(I)-N-heterocyclic carbene complexes 2a-2b were synthesized in good yields from silver complexes synthesized in situ, which in turn were obtained from the corresponding imidazolium salts with Ag2O in dichloromethane as a solvent. The new air-stable gold(I)-NHC complexes, 2a - 2b, were characterized using NMR spectroscopy, elemental analysis, infrared, and mass spectroscopy studies. The gold(I) complex 2a was characterized using X-ray crystallography. Bis-N-heterocyclic carbene–based gold(I) complexes 2a - 2b exhibited excellent catalytic activities for hydrohydrazidation of terminal alkynes yielding acylhydrazone derivatives. The working catalytic system can be used in gram-scale synthesis. In addition, the catalytic reaction mechanism of the hydrohydrazidation of terminal alkynes by gold(I)-NHC complex was studied in detail using density functional theory.  相似文献   

2.
An electron-deficient [CpERhCl2]2 catalyzed annulation of N-pentafluorophenylbenzamides with internal alkynes was successfully established under mild reaction conditions, with the assistance of Lewis acid silver salt. Particularly, electron-deficient benzamide substrates were smoothly transformed into the desired products in this catalytic system. The catalytic system showed a broad tolerance for different substituents on the aromatic rings or aryl, alkyl-substituted alkynes.  相似文献   

3.
Gold nanoparticles supported on TiO2 (0.8–1.4 mol %) catalyze the β-(E) regioselective hydrosilylation of a variety of functionalized terminal alkynes with alkylhydrosilanes in 1,2-dichloroethane (70 °C). The product yields are excellent, and the reaction times relatively short, while almost equimolar amounts of alkynes and hydrosilanes can be used. Minor side-products in up to 35% relative yield of cis-oxidative (dehydrogenative) disilylation, an unprecedented reaction pathway, are formed in the cases of the less hindered hydrosilanes and alkynes. Triethoxysilane reacts faster and affords apart from β-(E) addition products, minor α-hydrosilylation regio-isomers in upto 15% relative yield. Internal alkynes are generally less reactive or even unreactive. It is proposed that cationic Au(I) species stabilized by the support are the reactive catalytic sites, forming in the presence of hydrosilanes either silyl–Au(III)–H (hydrosilylation pathway) or Au(III)–disilyl species (dehydrogenative disilylation pathway). Regarding the mechanism of hydrosilylation, kinetic experiments are in agreement with silyl carbometallation of the triple bond in the rate determining step of the reaction.  相似文献   

4.
The use of [(IPr)AuOH] as versatile, air- and moisture-stable pre-catalyst permits the in situ generation of the cationic gold(I) species [(IPr)Au]X after reaction with a Brønsted acid. This catalytic system presents as a main advantage the lack of use of a silver salt activator or co-catalyst which is often air-, light- and moisture-sensitive. A general gold(I)-catalyzed procedure using this in situ activation at very low catalyst loading is reported for the hydration of a broad range of internal and terminal alkynes.  相似文献   

5.
Xu Meng 《Tetrahedron》2010,66(23):4029-7391
An inexpensive catalytic system, which used a readily available Fe(acac)3 and trace quantity of Cu(acac)2 as the co-catalyst and air as the oxidant for the homo-coupling of terminal alkynes, has been developed. The catalytic system could also apply to the cross-coupling reaction of two different terminal alkynes.  相似文献   

6.
Hydrosilylation of functionalized terminal arylalkynes with a variety of silanes catalyzed by PtCl2 or PtO2 in the presence of the air-stable and bulky Xphos ligand was investigated. Regardless of the electronic nature (electron withdrawing or donating group) and the position (o, m, p) of the substituents on the aromatic ring, a single β-(E)-styrylsilanes was obtained in good to excellent yields. The regioselectivity of the H-Si bond addition was found to be governed by steric effects induced by the bulky Xphos ligand. A dramatic regioselectivity was also observed when functionalized terminal aliphatic alkynes were employed as a substrate and in these cases regioisomeric β-(E)-vinylsilanes were generated with excellent selectivity.  相似文献   

7.
The catalytic system composed of CuCl2 and 2,2′-biquinoline-4,4′-dicarboxylic acid dipotassium salt (BQC) was found to be highly efficient for the selective α-oxidation of internal alkynes to the corresponding α,β-acetylenic ketones, with aqueous tert-butyl hydroperoxide under mild conditions. For the first time, full conversions of alkynes were reached with excellent selectivities, and propargylic tert-butylperoxy ethers were observed and suggested as the reaction intermediates. In the case of terminal alkynes, the oxidations are sluggish and low yields ranging from 32% to 40% were obtained.  相似文献   

8.
o-Iodophenols and o-iodoaniline derivatives react with terminal alkynes under 1 atm of CO in the presence of pyridine and catalytic amounts of Pd(OAc)2 to generate coumarins and 2-quinolones, respectively, as the only products. Terminal alkynes bearing alkyl, aryl, silyl, hydroxyl, ester and cyano substituents are effective in these processes affording the desired products in moderate yields. The formation of coumarins and 2-quinolones in this process is in stark contrast with all previously described palladium-catalyzed reactions of o-iodophenols or o-iodoanilines with terminal alkynes and CO, which have afforded chromones and 4-quinolones. Moreover, under our reaction conditions terminal alkynes insert into the carbonpalladium bond instead of undergoing a Sonogashira-type coupling as confirmed by an isotope labeling experiment.  相似文献   

9.
New silver(I) carbene complexes were obtained starting from the N-heterocyclic carbene ligand precursors {[HB(RImH)3]Br2} (R = Bn, Mes and t-Bu) and {[HC(MeBImH)3](BF4)3}, by treatment of the imidazolium salt with Ag2O. Use of the tris-imidazolylborate precursors resulted in stable, well-characterized trimetallic complexes of general formula {Ag3[HB(RIm)3]2}Br, which were successfully employed as carbene transfer reagents in the synthesis of related gold(I) complexes by transmetallation. The silver complexes also proved to be active catalysts of the coupling of aryl iodides with terminal alkynes (the Sonogashira reaction), although related bimetallic silver complexes were found to exhibit enhanced reactivity.  相似文献   

10.
A cobalt‐catalyzed reductive coupling of terminal alkynes, RC?CH, with activated alkenes, R′CH?CH2, in the presence of zinc and water to give functionalized trans‐disubstituted alkenes, RCH?CHCH2CH2R′, is described. A variety of aromatic terminal alkynes underwent reductive coupling with activated alkenes including enones, acrylates, acrylonitrile, and vinyl sulfones in the presence of a CoCl2/P(OMe)3/Zn catalyst system to afford 1,2‐trans‐disubstituted alkenes with high regio‐ and stereoselectivity. Similarly, aliphatic terminal alkynes also efficiently participated in the coupling reaction with acrylates, enones, and vinyl sulfone, in the presence of the CoCl2/P(OPh)3/Zn system providing a mixture of 1,2‐trans‐ and 1,1‐disubstituted functionalized terminal alkene products in high yields. The scope of the reaction was also extended by the coupling of 1,3‐enynes and acetylene gas with alkenes. Furthermore, a phosphine‐free cobalt‐catalyzed reductive coupling of terminal alkynes with enones, affording 1,2‐trans‐disubstituted alkenes as the major products in a high regioisomeric ratio, is demonstrated. In the reactions, less expensive and air‐stable cobalt complexes, a mild reducing agent (Zn) and a simple hydrogen source (water) were used. A possible reaction mechanism involving a cobaltacyclopentene as the key intermediate is proposed.  相似文献   

11.
A novel pathway for homocoupling of terminal alkynes has been described using cyclopalladated ferrocenylimine 1 or 2/CuI as catalyst in the air. This catalytic system could tolerate several functional groups. The palladacycle 2 in the presence of n-Bu4NBr as an additive could be applied to Sonogashira cross-coupling reaction of aryl iodides, aryl bromides, and some activated aryl chlorides with terminal alkynes under amine- and copper-free conditions, mostly to give moderate to excellent yields.  相似文献   

12.
New functionalized quinuclidines were prepared via palladium-catalyzed addition reactions of terminal alkynes (donors) to internal alkynes (acceptors). The enantiopure terminal alkynes were derivatives of quincoridine and quincorine, two semi-natural Cinchona alkaloids. The processes exhibited high chemoselectivity and excellent diastereoselectivity, the E-enynes being obtained as single products in almost all cases. The synthesis of new tetra and pentasubstituted benzene derivatives in good yields by [2+2+2] benzannulation of the diynes, obtained by the palladium-catalyzed homodimerization of 10,11-didehydro quincoridine and 10,11-didehydro quincorine, with terminal alkynes and in fair yield by [4+2] benzannulation of an enyne derivative of 10,11-didehydro quincoridine with 2,4-hexane-diyne are reported.  相似文献   

13.
Cationic and neutral silver(I)–L complexes (L=Buchwald‐type biaryl phosphanes) with nitrogen co‐ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)–L complexes are extremely active catalysts in the promotion of the single and double A3 coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza‐Diels–Alder two‐ and three‐component coupling reactions of Danishefsky’s diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)–L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)–L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal–distal arene interaction of these silver(I)–L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes.  相似文献   

14.
Single‐crystal X‐ray diffraction of a series of ten crystalline silver(I)–trifluoroacetate complexes that contained designed ligands, each of which was composed of an aromatic system that was functionalized with terminal and internal ethynyl groups and a vinyl substituent, provided detailed information on the influence of ligand disposition and orientation, coordination preferences, and the co‐existence of different types of silver(I)–carbon bonding interactions (silver–ethynide, silver–ethynyl, silver–ethenyl, and silver–aromatic) on the construction of coordination networks that were consolidated by argentophilic and weak inter/intramolecular interactions. The complex Ag L10? 6 AgCF3CO2 ? H2O ? MeOH ( HL10 =1‐{[4‐(prop‐2‐ynyloxy)‐3‐vinylphenyl]ethynyl}naphthalene) is the first reported example that exhibits all four kinds of silver(I)–carbon bonding interactions in the solid state.  相似文献   

15.
The direct addition of carboxylic acids to terminal alkynes such as phenylacetylene in the presence of catalytic amount of [CpRu(CO)2Cl] (1) or [{CpRu(CO)2}2] (2) affords the anti-Markovnikov adducts with high selectivity. In most instances, the E-enol esters are the major products.  相似文献   

16.
In the presence of Pd catalyst, 3-imidazoline nitroxyl radicals promote oxidative coupling (dimerization) of terminal alkynes even in the absence of Cu(II) additives. On the other hand, the Pd-free CuI-PPh3-K2CO3-DMF catalytic system leads to the efficient cross-coupling of 1-hydroxy-4-[2-(p-iodophenyl)vinyl]-2,2,5,5-tetramethyl-3-imidazoline-3-oxide with terminal aryl- and hetarylacetylenes with the formation of 4-[2-(aryl/hetarylethynyl)phenyl)vinyl]-2,2,5,5-tetramethyl-3-imidazoline-3-oxide-1-oxyls in 70-75% yields.  相似文献   

17.
A combination of fluorobenziodoxole (FBX) and BF3 ? OEt2 in cyclopentyl methyl ether promotes regio‐ and stereoselective addition of benziodoxole and methoxy groups to alkynes. This difunctionalization reaction tolerates a variety of functionalized internal and terminal alkynes to afford trans‐β‐alkoxyvinylbenziodoxoles, which represent versatile precursors to stereochemically well‐defined multisubstituted vinyl ethers. The reaction is proposed to involve cleavage of the I?F bond of FBX by BF3, followed by electrophilic activation of the alkyne by the resulting cationic IIII species that triggers the nucleophilic addition of the ethereal oxygen.  相似文献   

18.
The combination of PdCl2[CH3CN]2 with XPhos is an efficient catalytic system for the Sonogashira-type cross-coupling of 2′-deoxyguanosine O6-arylsulfonates with terminal alkynes. The reactions generally proceed under mild conditions requiring no Cu co-catalyst to give the corresponding C-6-alkynylated deoxynucleosides in moderate to good yields.  相似文献   

19.
A highly efficient heterogeneous copper(I)-catalyzed three-component coupling of terminal alkynes, diazoesters and aldehydes has been achieved by using 10 mol% of copper(I) iodide complex [N,N-CuI-MCM-41] anchored on 2-aminoethylamino-modified mesoporous material MCM-41 as the catalyst under mild conditions, delivering a wide variety of 2-alkoxycarbonyl-substituted (E)-1,3-enynes in mostly good to high yields with excellent stereoselectivity. The heterogenized copper(I) complex can be facilely prepared from inexpensive reagents by using a simple procedure and exhibits a remarkably higher catalytic activity than CuI, and can be recycled more than ten times without a significant drop in its catalytic efficiency. This protocol represents the first example of heterogeneous copper-catalyzed stereoselective construction of functionalized 1,3-enynes from simple and commercially available starting materials.  相似文献   

20.
《Comptes Rendus Chimie》2014,17(6):570-576
Herein, a new application of an ionic liquid containing copper (I), ([Cu(Im12)2]CuCl2), is introduced. This ionic liquid was used as an efficient catalyst for the click cyclization between organic azides and terminal alkynes in various solvents. Then, the mixture of [bmim]BF4/[Cu(Im12)2]CuCl2 was used as a green catalytic medium for the multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from α-halo ketones. The reactions were performed efficiently in this mixture and excellent yields were obtained in all cases. This catalytic reaction medium was recycled five times without significant loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号