首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An atom economical method for the preparation of variously substituted 4H-pyrrolo[2,3-d]oxazoles was developed on the basis of thermal isomerization of 5-(2H-azirin-2-yl)oxazoles. The latter were prepared by Rh2(oct)4 catalyzed reaction of 2-(3-aryl/heteroaryl)-2-diazoacetyl-2H-azirines with a set of substituted acetonitriles, benzonitriles, acrylonitrile and fumaronitrile. According to DFT calculations the transformation of 5-(2H-azirin-2-yl)oxazole to 4H-pyrrolo[2,3-d]oxazole occurs through the nitrenoid-like transition state to give a 3aH-pyrrolo[2,3-d]oxazole intermediate, followed by 1,5-H-shift.  相似文献   

2.
2-Butyl-4-(methylseleno)-1-[[2′-(1H-tetrazol-5-yl)-1,1′-biphenyl-4-yl]methyl]-1H-imidazole-5-carboxylic acid (4) and 2-butyl-4-(phenylseleno)-1-[[2′-(1H-tetrazol-5-yl)-1,1′-biphenyl-4-yl]methyl]-1H-imidazole-5-carboxylic acid (5) have been prepared and tested for AT1 receptor antagonist properties. Both compounds proved to be potent AT1 receptor antagonists, with pKb estimates indicating that these selenides are very effective at blocking AT1 receptor mediated responses.  相似文献   

3.
On the basis of methyl esters of 2-aryl-5-hydrazino-1,3-oxazole-4-carboxylic acids the earlier unknown methyl esters of 2-aryl-5-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3-oxazole-4-carboxylic acids as well as their functional derivatives were synthesized. The latter were used for further transformations, in particular, for introducing the residues of highly basic aliphatic amines into the 5 position of oxazole, and the oxazol-2-yl moiety into the 4 position of the oxazole ring.  相似文献   

4.
Reaction of 5-methyl-1-aryl-1H-1,2,3-triazole-4-carbocylic acid chlorides with tryptamine derivatives afforded substituted 1-aryl-N-[2-(1H-indol-3-yl)ethyl]-5-methyl-1H-1,2,3-triazole-4-carboxamides. At heating these compounds in toluene in the presence of POCl3 and P2O5 Bischler-Napieralski cyclization occurs giving 1-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)-4,9-dihydro-3H-β-carbolines that can be transformed into β-carboline and tetrahydro-β-carboline derivatives.  相似文献   

5.
Reaction of 4-benzylidene-2-phenyl-1,3-oxazol-5(4H)-one with 2-(1H-benzimidazol-2-yl)ethaneamine led to the formation of 2-{2-[(Z)-1-benzamido-2-phenylvinyl]acetamidomethyl}benzimidazole that in a reaction with hexamethyldisilazane in DMF gave 5-benzylidene-1-(1H-benzimidazol-2-yl)-2-phenyl-3,5-dihydro-4H-imidazol-4-one. In the presence of K2CO3 in dioxane the reaction with hexamethyldisilazane resulted in the product of intramolecular addition, N-(4-benzyl-3-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]-benzimidazol-4-yl)benzamide  相似文献   

6.
New highly organosoluble metallophthalocyanines (M = Zn, Co, Ni and Cu) bearing four [4-(3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydro-1H-xanthen-9-yl)phenoxy] substituents at peripheral positions have been prepared by tetramerization of 4-[4-(3,3,6,6-tetramethyl-1,8-dioxo-dodecahydro-1H-xanthen-9-yl)phenoxy]phthalonitrile in 2-(dimethylamino)ethanol using microwave irradiation or conventional heating. Ni(II), Co(II), and Cu(I) chloride were employed in order to synthesize the corresponding metal phthalocyanines and Zn(OAc)2 was used for the preparation of the zinc phthalocyanines. 4-[4-(3,3,6,6-Tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydro-1H-xanthen-9-yl)phenoxy]phthalonitrile was obtained by nucleophilic displacement of the nitro group in 4-nitrophthalonitrile with 9-(4-hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xanthene-1,8(5H,9H)-dione. 9-(4-Hydroxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7-tetrahydro-2H-xanthene-1,8(5H,9H)-dione was synthesized efficiently from dimedone and 4-hydroxybenzaldehyde. All the phthalocyanines are soluble in DMSO, DMF, CHCl3, THF, CH2Cl2, and CH3CN. The new compounds were characterized by IR, NMR, and UV–vis spectroscopy, elemental analysis, and thermogravimetric analysis.  相似文献   

7.
《Polyhedron》2001,20(15-16):1995-2002
C-organostannyl- and organosilyl-derivatives of 2-(thien-2-ylmethyl)thiophene and 1-[(1H-pyrazol-1-yl)methyl]-1H-pyrazole have been synthesised and characterised spectroscopically. Lithiation and subsequent substitution by R3M takes place at the 5,5′ positions for both bis-heterocycles, and this is confirmed by the X-ray structure of 1,1′-[5,5′-(Ph3Sn)C3N2]2CH2.  相似文献   

8.
This study describes a simple and efficient procedure to synthesize a novel series of fourteen 4-substituted N-(5-pyridinyl-1H-1,2,4-triazol-3-yl)-6-(trifluoromethyl)pyrimidin-2-amines, where the 4-substituents are H, CH3, C6H5, 4-FC6H4, 4-CH3C6H4, 4-CH3OC6H4 and 2-Furyl; from the cyclocondensation reaction of N-[5-(pyridinyl)-1H-1,2,4-triazol-3-yl]guanidines with 4-alkoxy-4-alkyl(aryl/heteroaryl)-1,1,1-trifluoroalk-3-en-2-ones. The reactions were carried out in ethanol under reflux for 18 h and led to 40-68% yields. N-(Pyridyl-triazolyl)guanidine precursors were further obtained from reactions of cyanoguanidine with nicotinic or isonicotinic acid hydrazides and the halogenated enones from trifluoroacetylation of enolethers or acetals.  相似文献   

9.
A series of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety were synthesised and their antimicrobial activities were evaluated. All the target compounds were characterised by 1H NMR, 13C NMR, ESI-MS, IR and elemental analyses. The single crystal structure of 3-((5-((2-fluorobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIi) was also determined. The preliminary bioassays indicated that some of the target compounds possessed good antimicrobial activities. For example, 3-((4-phenyl-5-((4-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIs) exhibited the best inhibitory effect against Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri with the half-effective concentration (EC50) values of 47.6 μg mL?1 and 22.1 μg mL?1, respectively, which were superior to the commercial bactericide, bismerthiazol. Meanwhile, 3-((5-((4-chlorobenzyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazolin-4(3H)-one (VIIh) exhibited better fungicidal activities against Pellicularia sasakii and Colletotrichum capsici at the concentration of 50 μg mL?1, in comparison with the commercial fungicide, hymexazol.  相似文献   

10.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

11.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

12.
Four oxovanadium(V) complexes of heterocycle based ditopic ligands PyPzOAP (N-[amino(pyridin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PyPzOAPz (N-[amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid), PymPzOAP (N-[amino(pyridin-2-yl)methylidene]-1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-1H-pyrazole-3-carbohydrazonic acid) and PyPzCAP (5-methyl-1-(pyridin-2-yl)-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) and a binuclear (di-μ-oxo) oxovanadium(V) complex of the ligand PymPzCAP (1-(4,6-dimethylpyrimidin-2-yl)-5-methyl-N′-[1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazide) have been investigated. The ligands act as uninegative NNO tridentates donors for the VO2+ ion exhibiting their monotopicity. The ligands show varying emission properties due to the presence of fluophoric groups like 1-(2-pyridyl)pyrazole or 1-(2-pyrimidyl)pyrazole. The vanadium(V) complexes show fluorescence quenching with respect to the used ligands to a varying extent. The complexes were characterized by UV-Vis, IR, cyclic voltammetry and X-ray crystallography.  相似文献   

13.
The appropriate 1-arylhydrazinecarbonitriles 1a–c are subjected to the reaction with 2-chloro-4,5-dihydro-1H-imidazole (2), yielding 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3a–c, which are subsequently converted into the corresponding amides 4a–e, 8a–c, sulfonamides 5a–n, 9, ureas 6a–I, and thioureas 7a–d. The structures of the newly prepared derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 are confirmed by IR, NMR spectroscopic data, as well as single-crystal X-ray analyses of 5e and 8c. The in vitro cytotoxic potency of these compounds is determined on a panel of human cancer cell lines, and the relationships between structure and antitumor activity are discussed. The most active 4-chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzamide (4e) and N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-[1,1′-biphenyl]-4-sulfonamide (5l) inhibits the growth of the cervical cancer SISO and bladder cancer RT-112 cell lines with IC50 values in the range of 2.38–3.77 μM. Moreover, N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-phenoxybenzenesulfonamide (5m) has the best selectivity towards the SISO cell line and induces apoptosis in this cell line.  相似文献   

14.
4-Aryl-6-(trifluoromethyl)-2H-pyran-2-ones and ethyl 4-aryl-6-(trifluoromethyl)-2-oxo-2H-pyran-3-carboxylates react with sodium azide to produce highly functionalized CF3-1,2,3-triazoles: 3-[5-(trifluoromethyl)-1,2,3-triazol-4-yl]cinnamic acids and monoethyl esters of [5-(trifluoromethyl)-1,2,3-triazol-4-yl]arylmethylidene malonic acids.  相似文献   

15.
Reactions of methyl(ethyl) N-(2-cyanophenyl)carbamates with sodium azide in dimethylformamide at 80–90°C in the presence of anhydrous CdCl2 afforded the corresponding N-arylcarbamates with a 1,2,3,4-tetrazole fragment. The acylation of methyl N-[2-(1H-1,2,3,4-tetrazol-5-yl)phenyl]carbamate with acetic anhydride followed by the condensation of the obtained N-acyl derivative with thiophene-2-carbaldehyde in the KOH methanol solution led to the formation of methyl N-(2-{1-[3-(2-thienyl)-2-propenoyl]-1H-1,2,3,4-tetrazol-5-yl}phenyl)carbamate. The reaction of cyclohexyl N-(4-aminophenyl)carbamate with a triethyl orthoformate and sodium azide in glacial AcOH yielded cyclohexyl N-[4-(1H-1,2,3,4-tetrazol-1-yl)phenyl]carbamate.  相似文献   

16.
New thietanyl-substituted derivatives of pyrimidine-2,4(1H,3H)-dione and imidazole were synthesized. The alkylation of 6-methylpyrimidine-2,4(1H,3H)-diones with 2-chloromethylthiirane in water involved the N1 atom of the pyrimidine ring and afforded 6-methyl-1-(thietan-3-yl)-pyrimidine-2,4(1H,3H)-diones. Under analogous conditions 6-aminopyrimidine-2,4(1H,3H)-dione gave rise to 6-(thietan-3-ylamino)pyrimidine-2,4(1H,3H)-dione. Unsymmetrically substituted 2-methyl-4(5)-nitro- and 5(4)-bromo-2-methyl-4(5)-nitro-1H-imidazoles reacted with 2-chloromethylthiirane to produce mixtures of isomeric 2-methyl-4(5)-nitro-1-(thietan-3-yl)-1H-imidazoles and 5(4)-bromo-2-methyl-4(5)-nitro-1-(thietan-3-yl)-1H-imidazoles.  相似文献   

17.
Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediate thiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.  相似文献   

18.
A mild procedure for the preparation of 2-(5-amino-1-aryl-1H-1,2,3-triazol-4-yl)-2-iminoacetonitriles and 2-(5-amino-1-aryl-1H-1,2,3-triazol-4-yl)-2-oxoacetonitriles was achieved by the reaction of diaminomaleonitrile and phenyl/substituted phenyl diazonium chlorides. 4-Nitrophenyl diazonium chloride afforded 2-amino-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)maleonitrile. Triazole iminoacetonitrile and maleonitrile derivatives were reacted further with excess acetone and benzaldehyde with a catalytic amount of 1,8-diazabicyclo[5.4.0]undec-7-ene to yield 5-(5-imino-2,2-dimethyl-2,5-dihydrooxazol-4-yl)-3-aryl-3H-1,2,3-triazol-4-amine and (E)-N-benzylidene-5-(5-imino-2-aryl-2,5-dihydrooxazol-4-yl)-3-aryl-3H-1,2,3-triazol-4-amine, respectively. Two competitive reactions, i.e., nucleophilic substitution and nucleophilic addition, were observed when triazole oxoacetonitrile and maleonitrile derivatives were reacted with hydroxylamine hydrochloride in the presence of sodium acetate.  相似文献   

19.
Huisgen reaction of (E)-1,5-diarylpent-2-en-4-yn-1-ones and (E)-1,5-diarylpent-1-en-4-yn-3-ones afforded 1-aryl-3-(5-aryl-1H-1,2,3-triazol-4-yl)prop-2-en-1-ones and 3-aryl-1-(5-aryl-1H-1,2,3-triazol-4-yl)-prop-2-en-1-ones, respectively. (E)-1-Aryl-3-(5-phenyl-1H-1,2,3-triazol-4-yl)prop-2-en-1-ones reacted with hydrazine hydrate and phenylhydrazine to give 72–93% of 4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-5-phenyl-1H-1,2,3-triazoles which underwent dehydrogenation on heating in boiling acetic acid with formation of the corresponding pyrazole derivatives. The molecular structures of (E)-3-phenyl-1-(5-phenyl-1H-1,2,3-triazol-4-yl)prop-2-en-1-one and 4-[3-(4-methylphenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl]-5-phenyl-1H-1,2,3-triazole were studied by X-ray analysis. 4-(3-Aryl-4,5-dihydro-1H-pyrazol-5-yl)-5-phenyl-1H-1,2,3-triazoles showed toxicity against Daphnia magna.  相似文献   

20.
The readily synthesized 3-(4-Hydroxy-1-methyl-1,2-dihydro-2-oxoquinolin-3-yl)-1-phenyl-1H-pyrazole-4-carbaldehyd (5) and 3-(2-Oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde (6) were utilized as a convenient starting precursor materials for synthesis of novel enone system 4-hydroxy-1-methyl-3-(4-(2H-2-oxo-chromen-3-yl)prop-2-enoyl)-1-phenyl-1H-pyrazol-4-yl)quinolin-2(1H)-one (7) and4-hydroxy-1-methyl-3-(2E)-3-(3-(2-oxo-2H-chromen-3-yl)-1-phenyl-1H-pyrazol-4-yl)acryloyl)quinolin-2(1H)-one (8). Simple homonuclear NOE experiment (NOESY 1D) method was performed for structure elucidation of the novel quinolinyl chalcones. The synthesized compounds have been estimated for their effect of growth on some selective crop of plants (Hibiscus, Mint and Basil).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号