首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic structure of sub-monolayer amounts of Ti deposited on the Al(001) surface at room temperature has been investigated using low-energy electron diffraction (LEED) and low-energy ion scattering spectroscopy (LEIS). The Ti coverage was determined using Rutherford backscattering spectroscopy (RBS). Though a crisp LEED image is inherently difficult to obtain, the symmetry of the observed c(2 × 2) LEED images allows us to infer a structure which places Ti atoms in every other Al lattice site. Analysis of the LEIS azimuth- and polar-angle scan spectra has been done to determine the best structural model which supports the c(2 × 2) symmetry of the LEED image as well as LEIS experimental data. It was concluded that the best model consistent with the experimental data, puts Ti preferentially below the surface of the Al substrate at every other lattice site for sub-monolayer coverage of Ti on Al(001). As Ti coverage increases, the presence if Ti atoms in the surface layer also increases. Results of this study are relevant to research pertaining to the possible use of Ti as a catalyst in sodium alanate (NaAlH4) in hydrogen storage applications.  相似文献   

2.
D.S. Choi  D.H. Kim 《Surface science》2010,604(19-20):1737-1741
We have investigated the surface structure of the Al/W(110) surface using low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (ISS). We observe a p(2 × 1) double domain LEED image for the 0.5 ML Al/W(110) surface at annealing temperature 850 °C. We found that 0.5 ML Al atoms cover on the W(110) surface uniformly but do not form 3 or 2-dimensional islands. We also measured the Al adsorption site at the Al/W(110)-p(2 × 1) surface using ISS. We found that Al atoms adsorbed at the center of the bridge site. The height of the adsorbed Al atoms is determined to be 2.18 ± 0.15 Å above the W surface layer.  相似文献   

3.
We report here the growth of Ag film and its thermal stability on the TiO2(1 1 0)-(1×1) surface using combination techniques of low-energy ion scattering (LEIS), X-ray photoelectron spectroscopy (XPS), and low-energy electron diffraction (LEED). At a surface temperature as low as 125 K, a 2D growth of Ag films seems to occur for submonolayer coverages up to ∼0.8 ML. Annealing of low temperature grown Ag films to 500 K for coverage of 1–2.4 ML would result in the formation of metastable Ag layers with rest of Ag forming 3D needle-like islands on top of this Ag film.  相似文献   

4.
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2 × 1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ± 22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by ? 4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (< 10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.  相似文献   

5.
We report the results of a Surface X-Ray Diffraction (SXRD) study of Fe nanostructured films deposited on c(2 × 2)-N/Cu(100) at room temperature (RT), with Fe coverage ΘFe = 0.5 ML and ΘFe = 1 ML. The c(2 × 2)-N/Cu(100) surface is an example of self-organised system, that can be used for growth of arrays of metal nano-islands and organic molecules assemblies. We chose two different values of N coverage, ΘN = 0.3 ML and ΘN = 0.5 ML, the second value corresponding to N saturation. We monitored the presence of surface diffraction peaks in hk scans and we performed Crystal Truncation Rods (CTR) analysis with ROD fitting programme. In the case of ΘN = 0.5 ML, i.e. at saturation coverage, the CTR could be fitted with one surface domain with p4gm(2 × 2) symmetry. In the surface cell adopted, N atoms occupy four-fold hollow sites, with Fe (intermixed with Cu) giving rise to a “clock” reconstruction previously observed on iron nitride films obtained by co-deposition and annealing. This result is an indirect confirmation of N surface segregation on top of the Fe films, occurring during the growth at RT. When subsaturation N coverage (ΘN = 0.3 ML) is used as a substrate for Fe deposition, the best results could be obtained with a model where two surface domains are present: the first one corresponds to a surface cell with Fe sitting in four-fold hollow sites on bare Cu areas, with possible interdiffusion in the second lattice. The second domain is assigned to growth of Fe on the N-covered square islands occurring once the bare Cu areas are fully covered. The SXRD analysis on N-covered surface domains shows that the mechanism of reconstruction and of N segregation on top layer is already active at RT for all N-coverage values.  相似文献   

6.
Chlorine adsorption on Ru(0001) surface has been studied by a combined density functional theory (DFT) and quantitative low energy electron diffraction (LEED) approach. The (√3 × √3)R30°-Cl phase with ΘCl = 1/3 ML and chlorine sitting in fcc sites has been identified by DFT calculations as the most stable chlorine adsorbate structure on Ru(0001) with an adsorption energy of ? 220 kJ/mol. The atomic geometry of (√3 × √3)R30°-Cl was determined by quantitative LEED. The achieved agreement between experimental and simulated LEED data is quantified by a Pendry factor of rP = 0.19 for a fcc adsorption site with a Cl-Ru bond length of 2.52 Å. At chlorine coverages beyond 1/3 ML LEED reveals diffuse diffraction rings, indicating a continuous compression of the hexagonal Cl overlayer with a preferred average Cl–Cl distance of 4.7 Å in the (√3 × √3)R30°-Cl, ΘCl = 1/3 ML phase towards 3.9 Å at saturation coverage of 0.48 ML.  相似文献   

7.
The atomic arrangement of submonolayer Bi films on Rh(111) surface was examined using low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). With low coverage, the LEED patterns showed incommensurate (IC) spots. The unit cell of IC was close to c(2 × 4) and had twofold symmetry. As the coverage increased, the unit cell shrank continuously along the [1¯10] direction, and the commensurate c(2 × 4) was formed at a coverage of 0.5 ML. At the coverage above 0.5 ML, two different structures of c(2 × 4) and (4 × 4) were observed by STM. When the surface is fully saturated by monolayer Bi atoms, Bi atoms formed the uniform (4 × 4) structure with sixfold symmetry. This is due to a strong Bi–Rh attractive interaction resulting in the two-dimensional localization of Bi adsorbates on the surface. As a result, a symmetrical transition of Bi films from twofold to sixfold symmetry occurred on Rh(111).  相似文献   

8.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

9.
Low Energy Electron Diffraction (LEED) and Density Functional Theory (DFT) have been used to analyse the structure of Cu{100}-p(2 × 6)-2mg-Sn at room temperature. In this work we found that the favoured geometry for this 0.33 ML Cu{100}-Sn phase is a combination of an overlayer structure and a surface alloy; two Sn atoms are alloyed in to the first copper layer and the other two Sn atoms adsorb at off symmetry hollow sites. In order to relieve the stress in the alloyed layer, the alloyed Sn atoms are buckled 0.59/0.45 ± 0.2 Å (DFT/LEED) above the centre of mass of the first layer copper atoms.  相似文献   

10.
The adsorption of 0.25, 0.5 and 1 monolayer (ML) of the transition metal Ni on the metal substrate Al(1 1 0) was studied using first-principles calculations at the level of density functional theory. The metal–metal system was analyzed with the generalized gradient approximation. Four stable atomic configurations were considered, and the optimized geometries and adsorption energies of different Ni adsorption sites on the Al(1 1 0) surface at selected levels of coverage were calculated and compared. The four-fold hollow site was determined to be the most stable adsorption site with adsorption energy of 5.101 eV at 0.25 ML, 3.874 eV at 0.5 ML and 3.665 eV at 1 ML. The adsorption energies of the four sites slightly decreased as the Ni coverage increased. Work function analysis showed that when Ni is adsorbed on the Al(1 1 0) surface, the work function decreased as the coverage increased due to depolarization. The Mulliken population and density of states were calculated to determine the charge distribution of the adsorption site, confirming that a chemisorption interaction exists between the adsorbed Ni atom and Al(1 1 0) surface atoms.  相似文献   

11.
The adsorption structure of nitric oxide (NO) on Ir(111) was studied by thermal desorption spectroscopy (TDS) and dynamical analyses of low-energy electron diffraction (LEED). At the saturation coverage at about 100 K, a 2 × 2 pattern was observed by LEED and two peaks appeared at 365 and 415 K in TDS. No change in the LEED IV curves was observed by annealing at 280 K, which means that the NO-saturated surface was retained at this temperature. On the contrary, partial desorption and changes of the LEED IV curves were observed by annealing at 360 K. Combined with previous vibrational studies, it is suggested that one adsorption species is not affected, while another species is partially desorbed and the rest of them are dissociated by annealing at 360 K. Dynamical analyses of LEED were performed for the 280 K-annealed and the 360 K-annealed surfaces, which correspond to the NO-saturated and the NO-dissociated Ir(111) surfaces, respectively. These revealed that NO occupies the atop, fcc-hollow and hcp-hollow sites (atop-NO + fcc-NO + hcp-NO) for the NO-saturated Ir(111) surface with the saturation coverage of 0.75 ML. For the 360 K-annealed surface, the atop-NO is not affected but the fcc-NO and the hcp-NO are partially desorbed as NO and partially dissociated to N and O, both of which occupy the fcc-hollow site on the surface.  相似文献   

12.
W. Moritz  J. Landskron  M. Deschauer 《Surface science》2009,603(10-12):1306-1314
The two main methods for surface structure determination, X-ray diffraction and low energy electron diffraction, are briefly compared and two areas are discussed where the application and further development of LEED seems promising. One field is the measurement of thermal vibration with LEED and the second is the analysis of substrate induced distortions in adsorbed organic molecules. As a test case for the analysis of thermal vibrations the results of a temperature dependent LEED I(V) analysis of Cu(1 1 0) is presented showing that LEED is sensitive enough to measure anisotropic vibration amplitudes. As example for organic molecules the results of a LEED I(V) analysis of thiouracil on Ag(1 1 1) are presented and compared to the results of a previous X-ray study. The differences in the structural details can be related to the different diffraction geometries of surface X-ray diffraction and LEED.  相似文献   

13.
The chemical and geometrical properties of the system pyridine on Si(100) are investigated in a combined photoelectron spectroscopy (XPS) and photoelectron diffraction (XPD) study. Synchrotron radiation was applied to achieve high spectral resolution and a high surface sensitivity. Our studies were performed at saturation coverage of pyridine on silicon. The XPS and XPD results, including diffraction patterns for all spectral resolved components, clearly show that pyridine is reacting with silicon dimer atoms of the (2 × 1)-reconstructed surface. We propose a tetra-σ-bonded structure model and provide detailed structure parameters.  相似文献   

14.
Synchrotron radiation based photoemission spectroscopy (SRPES) and low energy electron diffraction (LEED) are used to study the interaction between Ag atoms and the Si(1 1 1)1 × 1–H surface. At an Ag coverage of 0.063 monolayers (ML) on the Si(1 1 1)1 × 1–H surface, the Si 2p component corresponding to Si–H bonds decreases, and an additional Si 2p component appears which shifts to a lower binding energy by 109 meV with respect to the Si bulk peak. The new Si 2p component is also observed for 0.25 ML Ag on the Si(1 1 1)7 × 7 surface. These findings suggest that Ag atoms replace the H atoms of the Si(1 1 1)1 × 1–H surface and form direct Ag–Si bonds. Contrary to the widely accepted view that there is no chemical interaction between Ag particles and the H-passivated Si surface, these results are in good agreement with recent first-principles calculations.  相似文献   

15.
The electronic passivation of a Ge(100) surface, via the chemisorption of H2O at room temperature (RT), and the temperature dependence of H2O coverage were investigated using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). With a saturation H2O dose at RT, a highly-ordered structure, due to the dissociative chemisorption of H2O, was observed on a Ge(100) surface with a coverage of 0.85 monolayers (ML). Annealing the room temperature H2O-dosed Ge surface to 175 °C decreased the coverage of H2O to 0.6 ML. Further annealing at 250 °C decreased the coverage of H2O sites to 0.15 ML, and the surface reconstruction of Ge dimers was observed over much of the surface. Annealing above 300 °C induced Ge suboxide structures, similar to the oxygen-dosed Ge surface. STS measurements confirmed that the surface dangling bond states near Fermi energy are removed by the H2O chemisorption because the dangling bonds of Ge atoms are terminated by ―OH and ―H. The H2O pre-dose at room temperature provides a template for the ultrathin passivation of Ge(100) surface via atomic layer deposition (ALD) at RT, since near monolayer nucleation can be obtained with a 1/2 hydroxylated and 1/2 hydrogenated Ge surface.  相似文献   

16.
Structures of monolayer nickel nitride (NiN) on Cu(0 0 1) surface are studied by X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Formations of Ni–N chemical bonds and NiN monolayer at the surface are confirmed by XPS on the N-adsorbed Cu(0 0 1) surfaces after Ni deposition and subsequent annealing to 670 K. A c(2 × 2) structure is always observed in the LEED patterns, which is a quite contrast to the (2 × 2)p4g structure observed usually at the N-adsorbed Ni(0 0 1) surface. Atomic images by STM indicate the mixture of Ni–N and Cu–N structures at the surface. Density of the trenches on the N-saturated surface decreases and the grid pattern on partially N-covered surfaces becomes disordered with increasing the Ni coverage. These results are attributed to the decrease of the surface compressive stress at the N-adsorbed Cu surface by mixing Ni atoms.  相似文献   

17.
A metastable Fe(A) terminated Fe3O4(001) surface was prepared by tailoring the surface preparation conditions. STM, LEIS and LEED are utilized to demonstrate that annealing the Ar+ sputtered surface to 350 °C produces an Fe(A) terminated surface with a (√2 × √2)R45° superstructure. Within the superstructure both single Fe atoms and Fe dimer species are observed. The surface is reoxidized upon annealing to higher temperatures, eventually leading to the recovery of the energetically favorable Jahn–Teller distorted surface at 700 °C. The ability to reproducibly prepare the Fe(A) termination in this simple manner will allow investigations into the structure–function relationship for this important technological material.  相似文献   

18.
The growth of interface-stabilized cobalt oxide (CoOx) nanolayers on Pd(100) has been investigated and their structures are reported as a function of coverage. Several different phases have been observed by LEED and STM experiments, and they have been characterized spectroscopically by photoemission and X-ray absorption. The data indicate that in the low coverage regime (up to ΘCo  2–3 ML) rock-salt CoO type phases are formed (defective in the single layer regime, and stoichiometric in multilayers) with (100) or (111) termination. At higher coverage (ΘCo  10–20 ML) spinel Co3O4(111) and CoO(100) layers have been detected, in ratios dependent on the preparation conditions. The observed structures are discussed in relation to similar structures reported recently for CoOx films on Ir(100) [W. Meyer et al., J. Phys.: Condens. Matter 20 (2008) 265011].  相似文献   

19.
We have studied by Spot Profile Analysis Low Energy Electron Diffraction (SPA-LEED) and Auger Electron Spectroscopy (AES) Ni–Al alloyed layers formed by annealing, around 780 K, Al deposits on a stepped Ni(1 1 1) surface. The surface structure and composition of the thin epitaxial Ni3Al and NiAl films, obtained respectively below and above a critical Al initial coverage θc, differ markedly from those of corresponding bulk alloys.The Ni3Al ordered films form in a concentration range larger than the stability domain of the L12 Ni3Al phase. The NiAl films present a marked distortion with respect to the lattice unit cell of the B2 NiAl phase, which slowly decreases when the film thickness increases.It also appears that the value of θc depends on the morphology of the Ni(1 1 1) substrate, increasing from θc = 4.5 ML for a flat surface to θc = 10 ML for a surface with a miscut of 0.4°. This could be directly related to the presence of steps, which favour Ni–Al interdiffusion.  相似文献   

20.
Motivated by the need to form 1D-nanostructured dopants on silicon surfaces, we have attempted to grow Ga on the high index Si(5 5 12) surface which has a highly trenched (1D) morphology. The evolution of the interface with Ga adsorption in the monolayer regime has been probed by in situ AES, LEED and EELS. Controlling the kinetics by changing the Ga flux rates shows an interesting difference in the 1.0 to 1.5 ML region. The low flux rate (0.03 ML/minute) results in a Frank van der Merwe (layer by layer) growth mode up to 2 ML, while the higher flux rate (0.1 ML/minute) shows a transient island formation after the completion of 1 ML. The low rate shows the formation of 2 × (3 3 7) and (2 2 5) superstructures, while only the 2 × (3 3 7) is observed in a wide coverage range for the higher rate. The results demonstrate the ability to kinetically control the surface phases with different electronic properties of this technologically important interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号