首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of √3 × √3 ordered gold and silver monolayers on a Si(111) substrate have been investigated by Auger, low energy electron diffraction and photo-emission analysis. It has been found that oxygen adsorption on these surfaces is considerably weaker than on clean Si surfaces. This new result clearly emphasizes the correlation between the oxidation properties of Si atoms and their local environment. A comparison is made with previous results concerning Au-Si amorphous metallic alloys where gold atoms act as a catalyst for the oxidation.  相似文献   

2.
Pudikov  D. A.  Zhizhin  E. V.  Rybkin  A. G.  Rybkina  A. A.  Zhukov  Yu. M.  Vilkov  O. Yu.  Shikin  A. M. 《Physics of the Solid State》2016,58(12):2550-2554
Physics of the Solid State - A comparative investigation of graphene prepared by cracking of propylene (C3H6) on nickel surfaces with different orientations, Ni(111) and Ni(100), has been carried...  相似文献   

3.
Distortions of the sqrt[3]x sqrt[3] Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, Q, related to the surface band occupancy. A novel understanding of the (3 x 3)-1U ("1 up, 2 down") and 2U ("2 up, 1 down") distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distortions. Negative strain attracts pseudocharge from the valence band causing first a (3 x 3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (sqrt[3] x sqrt[3])-3U ("all up") state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.  相似文献   

4.
The ground state of Sn/Si(111) and Sn/Ge(111) surface alpha phases is reexamined theoretically, based on ab initio calculations where correlations are approximately included through the orbital dependence of the Coulomb interaction (in the local density+Hubbard U approximation). The effect of correlations is to destabilize the vertical buckling in Sn/Ge(111) and to make the surface magnetic, with a metal-insulator transition for both systems. This signals the onset of a stable narrow gap Mott-Hubbard insulating state, in agreement with very recent experiments. Antiferromagnetic exchange is proposed to be responsible for the observed Gamma-point photoemission intensity, as well as for the partial metallization observed above 60 K in Sn/Si(111). Extrinsic metallization of Sn/Si(111) by, e.g., alkali doping, could lead to a novel 2D triangular superconducting state of this and similar surfaces.  相似文献   

5.
Hao Peng 《中国物理 B》2022,31(10):106801-106801
The intercalation of heteroatoms between graphene and metal substrates is a promising method for integrating epitaxial graphene with functional materials. Various elements and their oxides have been successfully intercalated into graphene/metal interfaces to form graphene-based heterostructures, showing potential applications in electronic devices. Here we theoretically investigate the hafnium intercalation between graphene and Ir(111). It is found that the penetration barrier of Hf atom is significantly large due to its large atomic radius, which suggests that hafnium intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures. Our results show the different intercalation behaviors of a large-size atom and provide guidance for the integration of graphene and hafnium oxide in device applications.  相似文献   

6.
Noble metals were intercalated under a graphite monolayer formed on the (111) nickel single-crystal surface. The valence-band electronic structure of the systems thus obtained was studied by angle-resolved photoelectron spectroscopy. Intercalation of noble metals was shown to weaken carbon bonding to the substrate.  相似文献   

7.
《Surface science》1994,314(3):L879-L883
The dense 2D structures of Pb on Ge(111) formed at above one monolayer coverage have been reexamined at room temperature with scanning tunneling microscopy. It was found that the √3-β phase, despite its structural simplicity has a very complex appearance; depending on the tunneling parameters, structures with either one, three, or four protrusions per √3 unit cell were observed. Remarkably it is not possible to associate any of the observed patterns of protrusions directly with the location of individual atoms. However, by comparing the results on the commensurate √3-β phase and the closely related striped incommensurate phase it was possible to distinguish between features induced by the substrate and the adsorbate.  相似文献   

8.
9.
We show here that Br(2) intercalation is an efficient method to enable exfoliation of epitaxial graphene on metals by adhesive tape. We exemplify this method for high-quality graphene of macroscopic extension on Ir(111). The sample quality and the transfer process are monitored using low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), scanning electron microscopy (SEM) and Raman spectroscopy. The developed process provides an opportunity for preparing graphene of strictly monatomic thickness and well-defined orientation including the transfer to poly(ethylene terephthalate) (PET) foil.  相似文献   

10.
Graphene growth of mono-, bi- and tri-layers on Ni(111) through surface segregation was observed in situ by low energy electron microscopy. The carbon segregation was controlled by adjusting substrate temperature from 1200 K to 1050 K. After the completion of the first layer at 1125 K, the second layer grew at the interface between the first-layer and the substrate at 1050 K. The third layer also started to grow at the same temperature, 1050 K. All the layers exhibited a 1 × 1 atomic structure. The edges of the first-layer islands were straight lines, reflecting the hexagonal atomic structure. On the other hand, the shapes of the second-layer islands were dendritic. The edges of the third-layer islands were again straight lines similar to those of the first-layer islands. The phenomena presumably originate from the changes of interfacial-bond strength of the graphene to Ni substrate depending on the graphene thickness. No nucleation site of graphene layers was directly observed. All the layers expanded out of the field of view and covered the surface. The number of nucleation sites is extremely small on Ni(111) surface. This finding might open the way to grow the high quality, single-domain graphene crystals.  相似文献   

11.
12.
13.
We report the electronic structure of the Au-intercalated graphene/Ni(111) surface using angle-resolved photoemission spectroscopy and low energy electron diffraction. The graphene/Ni(111) shows no Dirac cone near the Fermi level and a relatively broad C 1s core level spectrum probably due to the broken sublattice symmetry in the graphene on the Ni(111) substrate. When Au atoms are intercalated between them, the characteristic Dirac cone is completely recovered near the Fermi level and the C 1s spectrum becomes sharper with the appearance of a 10?×?10 superstructure. The fully Au-intercalated graphene/Ni(111) surface shows a p-type character with a hole pocket of ~0.034?Å?1 diameter at the Fermi level. When the surface is doped with Na and K, a clear energy gap of ~0.4?eV is visible irrespective of alkali metal.  相似文献   

14.
15.
NiRu, ZnRu, SnRu and SnSn mixtures considerably improved the saturation magnetization, Ms with low substitution values; diminishing quickly at the same times the coercivity, H ci to suitable values for high-density magnetic recording applications. On the other hand, the NiSn mixture also decreased the coercivity rapidly however without enhancing the saturation magnetization. The shown differences on magnetic properties were mainly due both to magnetic nature of divalent ion and to secondary phase apparitions. The mixtures with Sn2?+? as partner ion diminished markedly to T c. The tetravalent Ru4?+? ion has a special effect on magnetic properties of hexagonal ferrites (increases Ms and diminishes fast H ci with low substitutions).  相似文献   

16.
17.
Graphene with a Dirac cone-like electronic structure has been extensively studied because of its novel transport properties and potential application for future electronic devices. For epitaxially grown graphene, the process conditions and the microstructures are strongly dependent on various substrate materials with different lattice constants and interface energies. Utilizing angle-resolved photoemission spectroscopy, here we report an investigation of the electronic structure of single-crystalline graphene grown on Cu/Ni(111) alloy film by chemical vapor deposition. With a relatively low growth temperature, graphene on Cu/Ni(111) exhibits a Dirac cone-like dispersion comparable to that of graphene grown on Cu(111). The linear dispersions forming Dirac cone are as wide as 2 e V, with the Fermi velocity of approximately 1.1×10~6 m/s. Dirac cone opens a gap of approximately 152 meV at the binding energy of approximately 304 meV. Our findings would promote the study of engineering of graphene on different substrate materials.  相似文献   

18.
Cluster model calculations have been performed for CHx, x = 0−3, chemisorbed on Ni(100) and Ni(111). The predicted chemisorption energies, at the present level of theory, based on bond-prepared clusters for Ni(100) are for carbon 150 kcal/mol, for CH 136 kcal/mol, for CH2 91 kcal/mol and for CH3 46 kcal/mol. The corresponding energies for Ni(111) are for CH 120 kcal/mol, for CH2 88 cal/mol and for CH3 49 kcal/mol. These chemisorption energies lead to similar stabilities for all CHx fragments on both Ni(100) and Ni(111). Large basis sets and multi-reference correlation treatments are found to be very important in particular for the multiply bonded species. The vibrational C-H stretching frequencies predicted for CHx on Ni(111) are for CH 3054 cm−1 (2980 cm−1), for CH2 3204 cm−1 and for CH3 2709 cm−1 (2680 cm−1), where the available experimental values are given in parent The predicted ionization spectra of adsorbed CHx are also in general agreement with experimental findings.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号