首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulosic fibrous networks are modified using 3 different amino acids; small (Glycine, Gly), aliphatic (Leucine, Leu) and aromatic (Phenylalanine, Phe). The effect of amino acid functionality on chemical coupling to cellulose fibres in terms of their coverage and packing density are investigated. Different amino acid modified cellulose networks are characterised by using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The presence of amino acids is confirmed using ToF-SIMS. The quantitative distribution of different amino acids across the cellulose surface is assessed by using XPS. It is shown that the packing density of amino acids depends on the size of the side chain; smaller amino acids (Gly, Leu) tend to couple to the surface at higher density compared to larger ones (Phe). This study has implications for the functionalisation of polysaccharide materials for a wide range of applications.  相似文献   

2.
The functionalisation of Mesoporous Silica Nanoparticles (MSN) with the isocyanate group was carried out. The excellent reactivity of 3-isocynanatopropyltrichlorosilane allowed its grafting on the surface of MSN in mild conditions. Further reaction with different nucleophiles bearing primary amino groups led to the formation of a urea linkage and thus the covalent grafting of the nucleophiles to the MSN surface.  相似文献   

3.
Enantioseparations of fourteen dansyl amino acids were achieved by using a positively-charged single-isomer beta-cyclodextrin, mono-(3-methyl-imidazolium)-beta-cyclodextrin chloride, as a chiral selector. Separation parameters such as buffer pH, selector concentration, separation temperature, and organic modifier were investigated for the enantioseparation in order to achieve the maximum possible resolution. Chiral separation of dansyl amino acids was found to be highly dependent on pH since the degree of protonation of these amino acids can alter the strength of electrostatic interaction and/or inclusion complexation between each enantiomer and chiral selector. In general, the chiral resolution of dansyl amino acids was enhanced at higher pH, which indicates that the carboxylate group on the analytes may interact with the imidazolium group of cationic cyclodextrin. For most analytes, a distinct maximum in enantioresolution was obtained at pH 8.0. Moreover, the chiral separation can be further improved by careful tuning of the separation parameters such as higher selector concentration (e.g. 10 mM), lower temperature, and addition of methanol. Enantioseparation of a standard mixture of these dansyl amino acids was further achieved in a single run within 30 min.  相似文献   

4.
Here, the locus of functionalisation on graphene-related materials and the progress of the reaction is shown to depend strongly on the starting feedstock. Five characteristically different graphite sources were exfoliated and functionalized using a non-destructive chemical reduction method. These archetypical examples were compared via a model reaction, grafting dodecyl addends, evaluated with TGA-MS, XPS and Raman data. A general increase in grafting ratio (ranging from 1.1 wt% up to 25 wt%) and an improvement in grafting stoichiometry (C/R) were observed as flake radius decreased. Raman spectrum imaging of the functionalised natural flake graphite identified that grafting is directed towards flake edges. This behaviour was further corroborated, at atomistic resolution, by functionalising the graphene layers with bipyridine groups able to complex single platinum atoms. The distribution of these groups was then directly imaged using aberration-corrected HAADF-STEM. Platinum atoms were found to be homogeneously distributed across smaller graphenes; in contrast, a more heterogeneous distribution, with a predominance of edge grafting was observed for larger graphites. These observations show that grafting is directed towards flake edges, but not necessary at edge sites; the mechanism is attributed to the relative inaccessibility of the inner basal plane to reactive moieties, resulting in kinetically driven grafting nearer flake edges. This phenomenology may be relevant to a wide range of reactions on graphenes and other 2d materials.

The flake size and morphology of the starting material strongly effect the degree and location of grafting when using reductive functionalisation.  相似文献   

5.
利用电喷雾质谱、荧光、核磁和理论计算研究了ATP与19种氨基酸的弱相互作用.在质谱中发现除甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)外,其它氨基酸均可观测到与ATP因弱相互作用形成的复合物离子.利用不同质谱锥孔电压下复合物稳定性的不同,分析了侧链基团对ATP与19种氨基酸弱相互作用的影响.并利用荧光光谱和核磁共振波谱法研究了芳香性氨基酸与ATP的弱相互作用.结果表明,氨基酸与ATP的弱相互作用强弱顺序为:色氨酸(Trp)>苯丙氨酸(Phe)>具有R‖C-NH2的氨基酸>具有-RCOOH、-R-NH2的氨基酸>具有-RSH、-ROH的氨基酸>R为长链的氨基酸>R为短链的氨基酸.不同官能团的氨基酸与ATP的弱相互作用的模拟计算也证实了此结论,并发现氨基酸的主侧链基团与ATP分子基团间的多个分子间因氢键作用使复合物能稳定存在.这一结果将为预测蛋白与ATP结合位点及研究ATP的识别机理提供依据.  相似文献   

6.
The direct three-component asymmetric Mannich reaction catalyzed by acyclic chiral amines or amino acids is presented. Simple acyclic chiral amines and amino acids--such as alanine-tetrazole (9), alanine, valine, and serine-catalyzed the three-component asymmetric Mannich reactions between unmodified ketones, p-anisidine, and aldehydes with high chemo- and stereoselectivity, furnishing the corresponding Mannich bases with up to >99 % ee. This study demonstrates that the whole range of amino acids in nature, as well as nonproteogenic amino acid derivatives, can be considered in the design and tuning of novel, inexpensive organocatalysts for the direct asymmetric Mannich reaction.  相似文献   

7.
The functionalisation of a Si(100) silicon wafer allows for the oriented grafting of a monolayer of Mn12 nanomagnets using a two-step procedure.  相似文献   

8.
Macroinitiators with primary amino substituents were synthesized by one of the following techniques: a) cyanoethylation of cellulose followed by diborane reduction to produce aminopropylcellulose, 1; b) nitration, then SnCl2 reduction of poly(arylene ether sulfone), 5, to produce poly(2-aminoarylene ether sulfone), 2; c) phthalimidation of 5 followed by hydrazinolysis to yield poly(2-aminomethylarylene ether sulfone), 3; and d) LiAlH4 reduction of poly(cyanophenylene arylene ether) to poly(aminomethylphenylene arylene ether), 4. Heterogeneous grafting of Λ-benzyl-L-glutamate-N-carboxyanhydride, 8, to Polymer 1 resulted in a nonrandom distribution of amino acid residues; α-helical conformations were detected at low BLG-NCA/NH2 ratios (<5 amino acids). Using molar ratios ranging from 1 to 100 of 8, relative to the amine concentration, grafting to Polymers 3 and 4 was effected in anhydrous THF at room temperature under homogeneous conditions. If reaction times between 24 and 48 h are utilized, high grafting efficiencies (>80%) are obtained. The conformation of the polypeptide chain was evaluated by NMR and infrared spectroscopy. Polypeptides grafted to Polymers 3 and 4 appeared to adopt the expected conformation for the chain length predicted, i.e., a progression from random coil (<8 amino acids) to β-pleated sheet (8–13 amino acids) to α-helix (> 13 amino acids). The benzyl ester functions on the BLG grafts are subject to direct modification with amine nucleophiles; studies with butylamine correlate reaction conditions with extent of ester vs peptide cleavage. In the presence of 1-hydroxybenzotriazole, aminolysis of the ester is favored and conversions to Λ-amides up to 75% without peptide cleavage are achieved.  相似文献   

9.
Mild transition-metal catalysed cross-couplings enable direct functionalisation of biocatalytically halogenated tryptophans with alkyl iodides, representing a new alternative for late-stage derivatisations of halogenated aromatic amino acids. Moreover, this strategy enables preparation of (homo)tryptophan regioisomers in a simple two-step synthesis using a Pd-catalysed Negishi cross coupling. This method provides access to non-canonical constitutional surrogates of tryptophan, ready for use in peptide synthesis.  相似文献   

10.
The synthesis and characterisation of new arborescent architectures of poly(L ‐lysine), called lysine dendrigraft (DGL) polymers, are described. DGL polymers were prepared through a multiple‐generation scheme (up to generation 5) in a weakly acidic aqueous medium by polycondensing Nε‐trifluoroacetyl‐L ‐lysine‐N‐carboxyanhydride (Lys(Tfa)‐NCA) onto the previous generation G(n?1) of DGL, which was used as a macroinitiator. The first generation employed spontaneous NCA polycondensation in water without a macroinitiator; this afforded low‐molecular‐weight, linear poly(L ‐lysine) G1 with a polymerisation degree of 8 and a polydispersity index of 1.2. The spontaneous precipitation of the growing Nε‐Tfa‐protected polymer (GnP) ensures moderate control of the molecular weight (with unimodal distribution) and easy work‐up. The subsequent alkaline removal of Tfa protecting groups afforded generation Gn of DGL as a free form (with 35–60 % overall yield from NCA precursor, depending on the DGL generation) that was either used directly in the synthesis of the next generation (G(n+1)) or collected for other uses. Unprotected forms of DGL G1–G5 were characterised by size‐exclusion chromatography, capillary electrophoresis and 1H NMR spectroscopy. The latter technique allowed us to assess the branching density of DGL, the degree of which (ca. 25 %) turned out to be intermediate between previously described dendritic graft poly(L ‐lysines) and lysine dendrimers. An optimised monomer (NCA) versus macroinitiator (DGL G(n?1)) ratio allowed us to obtain unimodal molecular weight distributions with polydispersity indexes ranging from 1.3 to 1.5. Together with the possibility of reaching high molecular weights (with a polymerisation degree of ca. 1000 for G5) within a few synthetic steps, this synthetic route to DGL provides an easy, cost‐efficient, multigram‐scale access to dendritic polylysines with various potential applications in biology and in other domains.  相似文献   

11.
A new cellulose-based anion-exchanger was prepared by grafting polyallylamine onto cellulose. The material was obtained by partial oxidation of a size-exclusion grade cellulose gel by aq. NaIO4, forming dialdehyde cellulose, followed by Schiff base formation with a polyallylamine (PAA, molecular mass 5000) and subsequent reduction for stabilization. Three grades of PAA-cellulose gels, with amino group contents of 0.78, 1.01 and 1.28 mmol/g cellulose, were examined for their ionic interaction with mono- and divalent carboxylic acids at pH 2.5-5.5. While the retention factor for monovalent acids was nearly proportional to the amino group content of the gel, that for divalent acids was remarkably greater for the PAA-cellulose gel than for the conventional diethylaminoethyl (DEAE) cellulose gel bearing more amino groups (1.97 mmol/g cellulose). Such high capacity can be explained by the high local density of amino groups on grafted PAA, in contrast to the random and sparse charge distribution in conventional exchangers.  相似文献   

12.
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.  相似文献   

13.
Self-assembly represents a promising strategy for surface functionalisation as well as creating nanostructures with well-controlled, tailor-made properties and functionality. Molecular self-assembly at solid surfaces is governed by the subtle interplay between molecule–molecule and molecule–substrate interactions that can be tuned by varying molecular building blocks, surface chemistry and structure as well as substrate temperature.In this review, basic principles behind molecular self-assembly of organic molecules on metal surfaces will be discussed. Controlling these formation principles allows for creating a wide variety of different molecular surface structures ranging from well-defined clusters, quasi one-dimensional rows to ordered, two-dimensional overlayers. An impressive number of studies exist, demonstrating the ability of molecular self-assembly to create these different structural motifs in a predictable manner by tuning the molecular building blocks as well as the metallic substrate.Here, the multitude of different surface structures of the natural amino acid cysteine on two different gold surfaces observed with scanning tunnelling microscopy will be reviewed. Cysteine on Au(110)-(1×2) represents a model system illustrating the formation of all the above mentioned structural motifs without changing the molecular building blocks or the substrate surface. The only parameters in this system are substrate temperature and molecular coverage, controlling both the molecular adsorption state (physisorption versus chemisorption) and molecular surface mobility. By tuning the adsorption state and the molecular mobility, distinctly different molecular structures are formed, exemplifying the variety of structural motifs that can be achieved by molecular self-assembly.  相似文献   

14.
Effective adsorption of CO2 at low partial pressures is required for many technical processes, such as gas purification or CO2 removal in closed loop environmental control systems. Since the concentration of CO2 in such applications is rather low, a high adsorption capacity is a required property for the adsorbent. Silica aerogels possessing an open pore structure, a high porosity and a high surface area, have a great potential for utilisation as CO2 adsorbents. Nonetheless in order to reach high adsorption capacities, silica aerogels should be functionalised, for instance by amino functionalisation. In this work, two different functionalisation methods were applied for the generation of amino functionalised aerogels: co-condensation during the sol-gel process and post-treatment of the gel. The co-condensation functionalisation allows the introduction of up to 1.44 wt.% nitrogen into the aerogel structure with minor reductions in surface area, leading however only to minor increases in the adsorption capacity at low partial pressures. The post functionalisation of the gel causes a greater loss in surface area, but the CO2 adsorption capacity increases, due to the introduction of higher amounts of amino groups into the aerogel structure (up to 5.2 wt.% nitrogen). Respectively, 0.523 mmol CO2/g aerogel could be adsorbed at 250 Pa. This value is comparable with the adsorption capacity at this pressure of a standard commercially available adsorbent, Zeolite 13X.  相似文献   

15.
Design criteria for engineering inorganic material-specific peptides   总被引:3,自引:0,他引:3  
Development of a fundamental understanding of how peptides specifically interact with inorganic material surfaces is crucial to furthering many applications in the field of nanobiotechnology. Herein, we report systematic study of peptide sequence-activity relationships for binding to II-VI semiconductors (CdS, CdSe, ZnS, ZnSe) and Au using a yeast surface display system, and we define criteria for tuning peptide affinity and specificity for these material surfaces. First, homohexapeptides of the 20 naturally occurring amino acids were engineered, expressed on yeast surface, and assayed for the ability to bind each material surface in order to define functional groups sufficient for binding. Histidine (H6) was able to mediate binding of yeast to the five materials studied, while tryptophan (W6), cysteine (C6), and methionine (M6) exhibited different levels of binding to single-crystalline ZnS and ZnSe and polycrystalline Au surfaces. The ability of neighboring amino acids to up- and down-modulate histidine binding was then evaluated by use of interdigitated peptides (XHXHXHX). While the 20 amino acids exhibited a unique fingerprint of modulation for each material, some general trends emerged. With neutral defined by alanine, up-modulation occurred with glycine, basic amino acids, and the previously defined binding amino acids histidine, tryptophan, cysteine, and methionine, and down-modulation generally occurred with acidic, polar, and hydrophobic residues. We conclude that certain amino acids directly bind the material surface while neighboring amino acids locally modulate the binding environment for the materials we studied. Therefore, by the specific placement of up- and down-modulating amino acids, material specificity can be controlled. Finally, by employing the compositional and spatial criteria developed herein, it was possible to predictively design peptide sequences with material specificity, including a multimaterial binder, a Au-specific binder, and a ZnS-specific binder, that were verified as such in the context of yeast display.  相似文献   

16.
Three chiral stationary phases, obtained by grafting silica gel with (-)-trans-1,2-cyclohexanediamine, were studied for the resolution of α-amino acids by ligand-exchange chromatography. The packings were prepared by bonding the chiral ligand to silica gel via different hydrocarbon spacers. Separation of the optical isomers was accomplished by eluents containing a constant concentration of copper(II) acetate (0.05mM). The elution sequence of amino acids was found to be dependent on the grafting reaction selected to prepare the chiral packings.  相似文献   

17.
In drug delivery, carbon nanotubes (CNTs) hold a great potential as carriers because of their ability to easily cross biological barriers and be internalised into cells. Their high aspect ratio allows multi‐functionalisation and their development as a multimodal platform for targeted therapy. In this article, we report the controlled covalent derivatisation of triple‐functionalised CNTs with the anticancer drug gemcitabine, folic acid as a targeting ligand and fluorescein as a probe. The anticancer activity of gemcitabine was maintained after covalent grafting onto the CNTs. The functionalised nanotubes were internalised into both folate‐positive and negative cells, suggesting the passive diffusion of CNTs. Overall, our approach is versatile and offers a precise chemical control of the sidewall functionalisation of CNTs and the possibility to manoeuvre the types of functionalities required on the nanotubes for a multimodal therapeutic strategy.  相似文献   

18.
Vision begins when light is absorbed by visual pigments. It is commonly believed that the absorption spectra of visual pigments are modulated by interactions between the retinal and amino acids within or near 4.5 angstroms of the retinal in the transmembrane (TM) segments. However, this dogma has not been rigorously tested. In this study, we show that the retinal-opsin interactions extend well beyond the retinal binding pocket. We found that, although it is positioned outside of TM segments, the C-terminus of the rhodopsin in the rockfish longspine thornyhead (Sebastolobus altivelis) modulates its lambda(max) by interacting mainly with the last TM segment. Our results illustrate how amino acids in the C-terminus are likely to interact with the retinal. We anticipate our analyses to be a starting point for viewing the spectral tuning of visual pigments as interactions between the retinal and key amino acids that are distributed throughout the entire pigment.  相似文献   

19.
A series of dipeptide substituted nickel complexes with the general formula, [Ni(P(Ph)(2)N(NNA-amino acid/ester)(2))(2)](BF(4))(2), have been synthesized and characterized (P(2)N(2) = 1,5-diaza-3,7-diphosphacyclooctane, and the dipeptide consists of the non-natural amino acid, 3-(4-aminophenyl)propionic acid (NNA), coupled to amino acid/esters = glutamic acid, alanine, lysine, and aspartic acid). Each of these complexes is an active electrocatalyst for H(2) production. The effects of the outer-coordination sphere on the catalytic activity for the production of H(2) were investigated; specifically, the impact of sterics, the ability of the side chain or backbone to protonate and the pK(a) values of the amino acid side chains were studied by varying the amino acids in the dipeptide. The catalytic rates of the different dipeptide substituted nickel complexes varied by over an order of magnitude. The amino acid derivatives display the fastest rates, while esterification of the terminal carboxylic acids and side chains resulted in a decrease in the catalytic rate by 50-70%, implicating a significant role of protonated sites in the outer-coordination sphere on catalytic activity. For both the amino acid and ester derivatives, the complexes with the largest substituents display the fastest rates, indicating that catalytic activity is not hindered by steric bulk. These studies demonstrate the significant contribution that the outer-coordination sphere can have in tuning the catalytic activity of small molecule hydrogenase mimics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号