首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dy3+-doped monoclinic NaYFPO4 phosphor has been synthesized by solid-state reaction technique. Its photoluminescence in the vacuum ultraviolet (VUV)-visible region was investigated. The most intensity broadband emission centered at about 171 nm was the host-related absorption. Another broadband at 153 nm could be related to the O2→Dy3+ charge transfer band (CTB) absorption. The excitation peaks located at 178 nm and 256 nm were the spin-allowed (SA) and spin-forbidden (SF) fd transitions of Dy3+, respectively. Some sharp lines in the range of 280–500 nm were due to the ff transitions of Dy3+ within its 4f9 configuration. Under the VUV–vis excitation, the Dy3+-doped NaYFPO4 phosphor showed the characteristic emissions of Dy3+ (4F9/26H15/2 transitions and 4F9/26H13/2 transitions) with a stronger blue emission peaking at about 485 nm. All the chromaticity coordinates of the sample were in the near cold-white region. It can be predicted that this phosphor can be applied in both mercury-free luminescence lamps and white LED.  相似文献   

2.
Trivalent neodymium doped multi-component lead borate titanate aluminumfluoride (LBTAFNd) glasses were prepared and characterized as a function of Nd3+ ions concentration through optical absorption, NIR luminescence and decay measurements. The intensity (Ω2,4,6) and other radiative parameters were determined within the frame work of Judd–Ofelt theory. The intensities of absorption bands were expressed in terms of experimental oscillator strengths. Reasonably small root mean square deviation of ±0.384×10?6 obtained between the experimental and calculated oscillator strengths indicates the validity of intensity parameters. Upon 805 nm laser excitation, the NIR emissions at 0.92 μm (4F3/24I9/2), 1.07 μm (4F3/24I11/2) and 1.35 μm (4F3/24I13/2) were observed. The spectroscopic quality factor has been determined from the Ω4 and Ω6 intensity parameters as well as the intensities of emission bands centered at 1.07 and 1.35 μm. The decay curves of the 4F3/2 excited state were recorded by monitoring the emission and excitation wavelengths at 1.07 μm and 805 nm, respectively. The decay curves exhibit single exponential behavior for all the glasses. The laser characteristic parameters of 4F3/24I11/2 (1.07 μm) transition were determined and compared with other reported glasses.  相似文献   

3.
The radiation stability of the mixed crystals M1 ? xRxF2 + x (M = Ca, Sr, Ba) depends on types of the alkaline-earth and rare-earth ions. Different to Eu- and Ce-containing systems, M1 ? xPrxF2 + x solid solutions have a low radiation resistance, which may be associated with hole trapping on praseodymium ion according to the reaction Pr3+  Pr4+ which is typical for praseodymium. The coloration efficiency of M1 ? xPrxF2 + x crystals grows in the row Ca  Sr  Ba, which is explained satisfactorily within the model of rare-earth clusters, the structure of which is determined by the ratio of the base alkaline-earth cation to the praseodymium ion radii.  相似文献   

4.
Near-infrared emitting phosphors LaOCl:Nd3+/Yb3+ were prepared by the solid-state method, and their structures and luminescent properties were investigated by using X-ray diffraction and photoluminescence analysis, respectively. The studies shows that tetragonal LaOCl:Nd3+/Yb3+ can be synthesized by the solid-state reaction at 600 °C for 3 h. Upon 353 nm UV excitation, LaOCl:Nd3+/Yb3+ sample shows strong near-infrared emission lines in the region of 1060–1150 nm (corresponding to 4F3/2  4IJ transition of Nd3+, J = 9/2, 11/2, 13/2, 15/2) and 980–1050 nm (corresponding to 2F5/2  2F7/2 transition of Yb3+). The decreasing emission intensity of Nd3+ with increasing doping concentration of Yb3+ proved the energy transfer in LaOCl:Nd3+/Yb3+. The possible near-infrared emission and energy transfer mechanism between Nd3+ and Yb3+, as well as the energy transfer efficiency of LaOCl:Nd3+/Yb3+ were discussed.  相似文献   

5.
In this paper we report the combustion synthesis of rare earth (RE=Eu, Dy) doped Ba4Al2O7 phosphors. Prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), CIE color co-ordinates and their photoluminescence (PL) properties were also investigated. In case of Ba4Al2O7: Eu2+, the emission spectra show unique band centered at 495 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+, and PL emission spectra of Dy3+ ion under 348 nm excitation give two bands centered at 478 nm (blue) and 575 nm (yellow), which originate from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The results indicate that the Eu2+ and Dy3+ activated Ba4Al2O7 phosphor could find application in solid state lighting.  相似文献   

6.
In this study, we report a comprehensive structural and photoluminescence (PL) study on lithium metasilicate (Li2SiO3) phosphor ceramics doped with four rare earth (RE) ions. X-ray diffraction (XRD) patterns show a dominant phase, characteristic of the orthorhombic structure Li2SiO3 compound and the presence of dopants has no effect on the basic crystal structure of the material. The first excited state Er3+ luminescence at 1.54 μm arises from a sharp atomic-like radiative transition between the 4I13/2 state and the 4I15/2 state (ground level) under a 532 nm line of an Ar ion laser excitation. Sm doped samples showed Sm3+ emission characteristics corresponding to the some 4G5/26Hj (j=5/2,9/2,11/2) transitions indicating a strong crystal-field effect. PL spectra of Eu doped material exhibited peaks corresponding to the 5D07Fj (j=0,1,2,3 and 4) transitions under 405 nm excitation. The dominant red color emission at 612 nm from the hypersensitive (5D07F2) transition of Eu3+ indicates the inversion antisymmetry crystal field around Eu3+ ion, which is favorable to improve the red color purity. Dy doped samples showed the Dy3+ emission characteristic due to the 4F9/26H13/2 transition. Their relative intensity ratios also suggested the presence of a symmetric environment around the metal ion. We suggest that lithium metasilicate has enough potential candidates to be a phosphor material.  相似文献   

7.
A novel Sr2SiO4:Eu (1–5 mol %) superstructures (SS) were synthesized using bio-sacrificial A.V. gel assisted ultrasound method. Powder X-ray diffraction patterns confirmed the presence of both α and β phase formation. It was evident that the morphological growth was highly reliant on A.V. gel concentration, sonication time, pH and sonication power. The formation mechanisms for different hierarchical SS were proposed. From diffuse reflectance spectra, the energy band gap was estimated and found to be ∼4.70–5.11 eV. The photoluminescence emission spectra for the excitation at 392 nm, shows characteristic emission peaks at 593, 613, 654 and 702 nm which were attributed to 5D0  7F0, 7F1, 7F2 and 7F3 transitions of Eu3+ ions respectively. Conversely, when the samples were subjected to the heat treatment at 850 °C for 3 h under argon atmosphere, display an intense broad emission peak with two de-convoluted peaks at 490 and 550 nm due to 4f65d1→4f1 (8S7/2) transitions of Eu2+ ions. The concentration quenching phenomenon was discussed which attributes to energy transfer, electron–phonon coupling and ion–ion interaction. The Judd–Ofelt intensity parameters and other radiative properties were estimated by using emission spectra. The CIE chromaticity coordinate values of Sr2SiO4:Eu2+ and Eu3+ nanophosphors were located in green and red regions respectively. The calculated CCT and CRI values specify that the present phosphor can be fairly useful for both green and red components of white LED’s. Luminescence decay and quantum yield suggest the suitability of this phosphor as an efficient luminescent medium for light emitting diodes. Overall, the results elucidated a rapid, environmentally benign, cost-effective and convenient method for Sr2SiO4:Eu3+ synthesis and for the possible applications such as solid state lighting and display devices.  相似文献   

8.
In this research, zeolite-derived aluminosilicate phosphors were synthesized through the ion exchange route. Red light-emitting property of Eu3+-doped aluminosilicate phosphors were discussed from a view point of the Eu content, heat-treatment condition and the oxidation state of Eu ions. The crystalline phase of the host aluminosilicates could be successfully controlled as designed based on the published NaAlO2–SiO2 binary phase diagram. Orange-red emission peaks derived from the 5D07Fj (j=0, 1, 2, 3, 4) transition of Eu3+ were observed around 590–700 nm, and 4f65d→4f7 transition of Eu2+ was observed at around 400–500 nm. The relative intensity I(5D07F2) of the dominant emission peak at 612 nm increased consistently with the Eu content. The results of the XANES spectroscopy analysis revealed that Eu2+ ion in the 1400 °C as heat-treated host aluminosilicate were successfully converted to Eu3+ by the additional annealing at 1100 °C. The Eu contents and heat-treatment conditions were determined to exhibit the best performance as a red phosphor, which were 10 wt% and 1500 °C, respectively  相似文献   

9.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

10.
The polycrystalline powders of condensed polyphosphates KLa(1 ? x)Ybx(PO3)4 (x = 5, 10, 15, 20%) with linear chain were prepared by solid-state reaction. These samples were characterized by X-ray diffraction, FTIR and Raman scattering spectroscopies. The obtained powders are formed by single monoclinic phase of type III of condensed polyphosphate KLa(PO3)4 (KLP) crystallized with P21 space group. Lattice parameters varied as a function of the ytterbium concentration. As the Yb3+ concentration increased, the crystal lattice parameters were decreased. For the first time, near infrared (NIR) and UV–Visible spectroscopy of Yb3+ in KLa(PO3)4 powders, at room temperature, are carried out. In the IR range, a broad band relative to the fundamental 2F5/2  2F7/2 emission was registered. In the UV–Visible spectra, two bands typical of the Yb3+ charge transfer band (CTB) luminescence are observed. The registered decay times of these two emission types showed low sensibility to the Yb3+ concentration in KLa(PO3)4.  相似文献   

11.
Oxynitride phosphor powders comprising of CaSi2O2N2 doped with Tb3+ were successfully synthesized using a high-temperature solid-state reaction method. The experimentally determined photoluminescence (PL) properties of the produced phosphors meet the requirements of 2D/3D plasma display panels (PDPs). In particular, under the excitation of vacuum ultraviolet (VUV) synchrotron radiation and ultraviolet (UV) irradiation, emission peaks corresponding to the 5D37FJ (J=6, 5, 4, 3) and 5D47FJ (J=6, 5, 4, 3) transitions of Tb3+ ions were recorded. Monitoring the 5D47F5 emission of Tb3+ at 545 nm, the excitation bands were assigned to the host-related absorption as well as the 4f–5d (fd) and the 4f–4f (ff) transitions of Tb3+. The produced phosphors can be efficiently excited at 147 nm, and have an adequately short decay time (τ1/10=1.14 ms).  相似文献   

12.
Ground state non-covalent interactions between a macro cyclic calixarene receptor, namely, 4-tert-butylcalix[6]arene (1), and fullerenes (C60 and C70) were studied in toluene medium by absorption spectrophotometric method. Absorption band due to the charge transfer (CT) transition have been observed in the visible region between fullerenes and 1. Utilizing the CT absorption bands, various important physicochemical parameters like oscillator strength, resonance energy, transition dipole strength of the fullerene-1 complexes and ionization potential of 1 is determined in present investigations. From Jobs method of continuous variation, it is observed that both C60 and C70 form stable 1:1 complexes with 1. The most fascinating feature of the present study is that 1 binds selectively C70 compared to C60 as obtained from binding constant (K) data of C601 (KC601) and C701 (KC701) complexes, i.e., KC601 = 32,400 dm3·mol? 1 and KC701 = 110,000 dm3.mol? 1 and selectivity (KC701/KC601) = 3.4. 1H NMR analysis provides very good support in favor of strong binding between C70 and 1.  相似文献   

13.
The alkaline phosphate based LiNa3P2O7:Tb3+ phosphors are prepared by solid state reaction method. X-ray diffraction (XRD) analysis shows that all the powders possess orthorhombic structure. Fourier transform infrared (FTIR) spectroscopy studies suggest that the phosphor belong to the diphosphate family. The morphology of the phosphors is identified by scanning electron microscopy (SEM). Upon 378 nm excitation, the LiNa3P2O7:Tb3+ phosphors shown emission bands at 482, 545, 588 and 620 nm corresponding to the transitions 5D47F6, 5D47F5, 5D47F4 and 5D47F3, respectively. The optimized concentration of Tb3+ in LiNa3P2O7 phosphor is found to be 9 mol%. The concentration quenching mechanism was proved to be the exchange interaction between two nearest Tb3+ ions with the critical distance (Rc) of 1.18 nm. The Commission International de l'Eclairage (CIE) coordinates evidence that the phosphors emit in the green light region. Thermoluminescence properties of the prepared phosphors are studied by pre-irradiating the powders with different doses of UV irradiation. The kinetic parameters of TL glow curves are calculated using Chen's peak shape method.  相似文献   

14.
Ultrasonic irradiation (640 kHz) leads to the effective degradation of 5-methyl-benzotriazole (5-MBT) in O2 saturated aqueous solution. Up to 97% of 5-MBT is eliminated within 2 h of treatment. Upon extended treatment of 6 h, UV absorbance of the n  π1 and π  π1 transitions associated with aromatic and conjugated systems are completely removed, indicating complete destruction of the aromatic system in 5-MBT. The decomposition of 5-MBT follows pseudo-first order kinetics and the observed decomposition rate dropped significantly in the presence of tertiary butyl alcohol. Detailed product studies were performed employing a negative mode ESI LC–MS. Twenty eight intermediate products were detected during ultrasonic mediated degradation of 5-MBT. Reaction pathways are proposed based on the structures of products assigned to observed 28 masses from LC–MS and commonly accepted degradation pathways observed by thermal and hydroxyl radical mediated pathways often associated with ultrasonic treatment.  相似文献   

15.
For Nd:LaxY1−xVO4 (x = 0.11) crystal, the 4F3/2  4I13/2 transition property was investigated for the first time. The fluorescence peak of Nd:La0.11Y0.89VO4 crystal exhibited obvious inhomogeneous broadening comparing with that of Nd:YVO4 crystal. With laser diode array as pump source, 1.34 μm continuous-wave (CW) and active Q-switched laser operations based on 4F3/2  4I13/2 transition were realized. For CW laser operation, the maximum output power of 2.47, 2.13 W is obtained with slope efficiencies of 29.4%, 27.6%, and optical to optical conversion efficiency of 26.2%, 24.7%, respectively for a, c cut crystal samples. For acousto-optic (AO) Q-switched laser operation, the shortest pulse width, highest peak power and maximum pulse energy came from the a-cut sample, which were 13 ns, 2.69 kW and 35 μJ, respectively.  相似文献   

16.
The kinetics of the C6H5 reactions with CH3OH and C2H5OH has been measured by pulsed-laser photolysis/mass-spectrometry (PLP/MS) employing acetophenone as the radical source. Kinetic modeling of the benzene formed in the reactions over the temperature range 306–771 K allows us to reliably determine the total rate constants for H-abstraction reactions. In order to improve our low temperature measurements down to 304 K we have also applied the cavity ring-down spectrometric technique using nitrosobenzene as the radical source. Both sets of data agree closely. A weighted least-squares analysis of the two complementary sets of data for the two reactions gave the total rate constants k(CH3OH) = (7.82 ± 0.44) × 1011 exp [?(853 ± 30)/T] and k(C2H5OH) = (5.73 ± 0.58) × 1011 exp [?(1103 ± 44)/T] cm3 mol?1 s?1 for the temperature range studied. Theoretically, four possible product channels of the C6H5 + CH3OH reaction producing C6H6 + CH3O, C6H6 + CH2OH, C6H5OH + CH3 and C6H5OCH3 + H and five possible product channels of the C6H5 + C2H5OH reaction producing C6H6 + C2H5O, C6H6 + CH2CH2OH, C6H6 + CH3CHOH, C6H5OH + CH3CH2 and C6H5OCH2CH3 + H have been computed at the G2M//B3LYP/6?311+G(d, p) level of theory. The hydrogen abstraction channels were predicted to have lower energy barriers than those for the substitution reactions and their rate constants were calculated by the microcanonical variational transition state theory at 200–3000 K. The predicted rate constants are in good agreement with the experimental values. Significantly, the rate constant for the CH3OH reaction with C6H5 was found to be greater than that for the C2H5OH reaction and both reactions were found computationally to be dominated by H-abstraction from the hydroxyl group attributable to the affinity of the phenyl toward the OH group and the predicted lower energy barriers for the OH attack.  相似文献   

17.
The femtosecond photoisomerization processes of trans (T) 4-carboxy-2′,6′-dimethylazobenzen, which has been employed recently as an efficient photoregulator of DNA hybridization, were clarified by the rate equation analysis of measured transient absorbance changes with (350 nm) and without (380 nm) ground-state absorption of both the reactant (T) and photoproduct (cis: C) isomers under S2T-band excitation (360 nm, 150 fs pump): after excitation to the S2T state with a 450-fs lifetime, ~ 1.5% of the T-molecules in the S2T state are isomerized to the C-form within ~ 6 ps through the intermediate state (so called bottleneck state), but most of those return back to the T ground-state S2T via the internal conversion processes with an ultrafast kinetic rate of 2.2 × 1012 s? 1. Moreover, the rate equation analysis enables us to determine the T-to-C photoisomerization rate ηT,C per pump pulse to be 0.0011 at the pump energy of 80 nJ from the amplitude A3,350 of the offset component in the 350-nm probe signal, and to obtain the photoisomerization quantum yield ΦT,C = 0.094. The latter value is slightly lower than that of T-azobenzene, and well agrees with that (ΦT,C = 0.097) measured by the conventional CW irradiation method using a photostationary state.  相似文献   

18.
《Solid State Ionics》2006,177(13-14):1117-1122
We report a comparative study of transport and thermodynamic properties of single-crystal and polycrystalline samples of the ionic salt CsH5(PO4)2 possessing a peculiar three-dimensional hydrogen-bond network. The observed potential of electrolyte decomposition ≈ 1.3 V indicates that the main charge carriers in this salt are protons. However, in spite of the high proton concentration, the conductivity appears to be rather low with a high apparent activation energy Ea  2 eV, implying that protons are strongly bound. The transport anisotropy though is not large, correlates with the crystal structure: the highest conductivity is found in the [001] direction (σ130 °C 5.6 × 10 6 S cm 1) while the minimal conductivity is in the [100] direction (σ130 °C 10 −6 S cm 1). The conductivity of polycrystalline samples appears to exceed the bulk one by 1–3 orders of magnitude with a concomitant decrease of the activation energy (Ea  1.05 eV), which indicates that a pseudo-liquid layer with a high proton mobility is formed at the surface of grains. Infrared and Raman spectroscopy used to study the dynamics of the hydrogen-bond system in single-crystal and polycrystalline samples have confirmed the formation of such a modified surface layer in the latter. However, no bulk phase transition into the superionic disordered phase is observed in CsH5(PO4)2 up to the melting point Tmelt 151.6 °C, in contrast to its closest relative compound CsH2PO4.  相似文献   

19.
Polycrystalline Na3SO4F:Eu and NaMgSO4F:Eu halosulphate phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. Two well resolved peaks are observed at 593 nm and 614 nm, which are assigned to due to 5D07F1 and 5D07F2 transitions of Eu3+ ions. TL is observed at temperatures between 100 °C and 300 °C. In this paper, we report PL emission spectra of Eu3+ and TL glow curves, which are more sensitive than the standard TLD-CaSO4:Dy. The presented phosphors are applicable for the mercury free lamps and solid state lighting devices.  相似文献   

20.
Highly luminescent complexes of Eu and Tb ions with norfloxacin (NFLX) and gatifloxacin (GFLX) were prepared in sol–gel matrix. The red and green emissions of Eu and Tb ions were obtained by the energy transfer from the triplet state of (NFLX) and (GFLX) to the excited emitting states (5D0 and 5D4) of Eu and Tb, respectively. The intensity of the electric field emission bands (5D07F2, 617 nm and 5D47F5, 545 nm) of Eu and Tb ions were proportional to the concentration of (NFLX at pH 6.0) and (GFLX at pH 3.5) in acetonitrile with excitation wavelengths (λex) (340 and 395) and (370 and 350 nm) for Eu and Tb ions, respectively. The monitored luminescence intensity of the system showed a good linear relationship with the concentration of NFLX within a range of 5×10?9–5.8×10?6 and 5×10?8–1.0×10?6 mol L?1 with a correlation coefficient of 0.990, and for GFLX within a range of 2.4×10?9–3.2×10?5 and 5×10?8–8.0×10?6 mol L?1 with a correlation coefficient of 0.995. The detection limit (LOD) was determined as 3.0×10?9 and 1.0×10?8 mol L?1 for NFLX and 1.6×10?10 and 2.0×10?8mol L?1 for GFLX. The limit of quantification (LOQ) is 9×10?9 and 3.0×10?8 and 4.8×10?10 and 6.0×10?8 in case of Eu and Tb, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号