首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents a hybrid Cartesian grid and gridless approach to solve unsteady moving boundary flow problems. Unlike the Chimera clouds of points approach, the hybrid approach uses a Cartesian grid to cover most of the computational domain and a gridless method to calculate a relatively small region adjacent to the body surface, making use of the flexibility of the gridless method in handling surface grid with complicated geometry and the computational efficiency of the Cartesian grid. Four cases were conducted to examine the applicability, accuracy and robustness of the hybrid approach. Steady flows over a single NACA0012 airfoil and dual NACA0012 airfoils at different Mach numbers and angles of attack were simulated. Moreover, by implementing a dynamic hole cutting, node identification and information communication between the Cartesian grid and the gridless regions, unsteady flows over a pitching NACA0012 airfoil (small displacement) and two‐dimensional airfoil/store separation (large displacement) were performed. The computational results were found to agree well with earlier experimental data as well as computational results. Shock waves were accurately captured. The computational results show that the hybrid approach is of potential to solve the moving boundary flow problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
祝宝山 《力学学报》2008,40(1):9-18
采用快速拉格朗日涡方法数值模拟有复杂旋涡运动的非定常流动. 利用离散涡元模拟旋涡的产生、聚集和输送过程. 拉格朗日描述法用来计算离散涡元的移动,而移动速度则利用广义毕奥-萨伐尔公式结合快速多极子展开法计算,修正的涡半径扩散模型用来模拟离散涡元的黏性扩散. 突然起动圆柱和大攻角下突然起动翼型的非定常有涡流动的数值模拟,及其与试验结果的对比验证了方法的有效性. 另外,大攻角下突然起动翼型的计算结果给出了翼型起动后吸力面旋涡的产生、发展,周期性非定常流动的形成,以及尾流旋涡结构等一些重要的流动特征.[关键词] 非定常流有涡流动快速涡方法   相似文献   

3.
低雷诺数下柔性翼型气动性能分析   总被引:1,自引:0,他引:1  
基于流固耦合方法对吸力面5%至95%弦长处为三段柔性结构的NACA0012翼型绕流进行了数值模拟,研究了不同弹性模量下柔性翼型的气动性能和结构响应.结果表明:在大攻角下,翼面变形影响着翼型表面的非定常流场,起到延缓失速和提高升力的作用;失速后柔性翼的升力系数下降得较为缓慢,且柔性越大,升力系数下降得越平缓;适当减小弹性模量能够提高翼型的气动性能,然而弹性模量过小反而不利于翼型气动性能的提升,并且翼面会产生大幅度的振动.  相似文献   

4.
This paper presents an efficient numerical method for solving the unsteady Euler equations on stationary rectilinear grids. Boundary conditions on the surface of an airfoil are implemented by using their first-order expansions on the mean chord line. The method is not restricted to flows with small disturbances since there are no restrictions on the mean angle of attack of the airfoil. The mathematical formulation and the numerical implementation of the wall boundary conditions in a fully implicit time-accurate finite-volume Euler scheme are described. Unsteady transonic flows about an oscillating NACA 0012 airfoil are calculated. Computational results compare well with Euler solutions by the full boundary conditions on a body-fitted curvilinear grid and published experimental data. This study establishes the feasibility for computing unsteady fluid-structure interaction problems, where the use of a stationary rectilinear grid offers substantial advantages in saving computer time and program design since it does not require the generation and implementation of time-dependent body-fitted grids.  相似文献   

5.
低雷诺数俯仰振荡翼型等离子体流动控制   总被引:2,自引:2,他引:0  
黄广靖  戴玉婷  杨超 《力学学报》2021,53(1):136-155
针对低雷诺数翼型气动性能差的特点, 通过介质阻挡放电(dielectric barrier discharge, DBD)等离子体激励控制的方法, 提高翼型低雷诺数下的气动特性,改善其流场结构. 采用二维准直接数值模拟方法求解非定常不可压Navier-Stokes方程,对具有俯仰运动的NACA0012翼型的低雷诺数流动展开数值模拟.同时将介质阻挡放电激励对流动的作用以彻体力源项的形式加入Navier-Stokes方程,通过数值模拟探究稳态DBD等离子体激励对俯仰振荡NACA0012翼型气动特性和流场特性的影响.为了进行流动控制, 分别在上下表面的前缘和后缘处安装DBD等离子体激励器,并提出四种激励器的开环控制策略,通过对比研究了这些控制策略在不同雷诺数、不同减缩频率以及激励位置下的控制效果.通过流场结构和动态压强分析了等离子体进行流场控制的机理. 结果表明,前缘DBD控制中控制策略B(负攻角时开启上表面激励器,正攻角时开启下表面激励器)效果最好,后缘DBD控制中控制策略C(逆时针旋转时开启上表面激励器,顺时针旋转时开启下表面激励器)效果最好,前缘DBD控制效果会随着减缩频率的增大而下降, 同时会导致阻力增大.而后缘DBD控制可以减小压差阻力, 优于前缘DBD控制,对于计算的所有减缩频率(5.01~11.82)都有较好的增升减阻效果.在不同雷诺数下, DBD控制的增升效果较为稳定, 而减阻效果随着雷诺数的降低而变差,这是由流体黏性效应增强导致的.   相似文献   

6.
基于LBM-LES方法,对中低雷诺数下的NACA0012翼型纯音噪声进行了直接计算,研究了不同迎角和雷诺数对纯音噪声的影响。计算结果表明,翼型的声源主要位于翼型的分离区和后缘处,在不同迎角和雷诺数下的声辐射特征均具有偶极子声场的特点;迎角的增大将引起较大的旋涡尺度和湍流强度,吸力面声源区域前移。声压级频谱分析表明,随着迎角的增大,纯音噪声逐渐消失,噪声谱最终呈现宽频特征;随着雷诺数的增大,后缘压力脉动增大。声压级频谱中,主频频率随着雷诺数的增大而增大,且符合Paterson公式的幂律关系。此外,声压级频谱特性随着雷诺数的增大表现出由离散特性向宽频特性转变的趋势。  相似文献   

7.
In this paper, a new unsteady aerodynamic design method is presented based on the Navier-Stokes equations and a continuous adjoint approach. A basic framework of time-accurate unsteady airfoil optimization which adopts time-averaged aerodynamic coefficients as objective functions is presented. The time-accurate continuous adjoint equation and its boundary conditions are derived. The flow field and the adjoint equation are simulated numerically by the finite volume method (FVM). Feasibility and accuracy of the approach are perfectly validated by the design optimization results of the plunging NACA0012 airfoil.  相似文献   

8.
利用等离子体激励器发展了新型的环量增升技术,并对二维NACA0012翼型绕流实施控制。由于NACA0012翼型为尖后缘构型,环量增升装置由2个非对称型介质阻挡放电等离子体激励器构成。一个等离子体激励器贴附于翼型吸力面靠近后缘处,其诱导的壁面射流沿来流方向指向下游;另一个等离子体激励器贴附于翼型压力面靠近后缘处,其诱导的壁面射流与来流方向相反指向上游。在风洞中通过时间解析二维PIV系统对翼型绕流流场进行了测量,基于翼型弦长的雷诺数Re=20 000。结果表明在等离子体激励器的控制下,翼型压力面靠近后缘处可以形成一个定常回流区,从而起到虚拟气动外形的作用,因此翼型吸力面的流场得到加速,压力面的流场得到减速,使得翼型压力面的吸力以及压力面的压力都得到增加,进而增加了翼型的环量。风洞天平测力实验进一步验证了该环量增升技术的有效性。在整个攻角范围内,施加控制的翼型的升力系数相比没有控制的工况有明显的提高。  相似文献   

9.
低Reynolds数NACA0012翼型绕流的流动特性分析   总被引:1,自引:0,他引:1  
吴鋆  李天  王晋军 《实验力学》2014,29(3):265-272
在水槽中应用PIV测速技术研究了NACA0012翼型在Reynolds数为8200时的流动特性,重点关注了翼型绕流结构中主频和扰动增长速率随迎角的变化。结果表明,分离剪切层的扰动增长符合指数规律;且随着迎角的增大,转捩过程加速,表现为扰动增长率逐渐增大,转捩的起始位置逐渐向上游移动。在所有实验迎角情况下,流场均由脱落旋涡主导,但其主导作用随着迎角的增大而削弱。  相似文献   

10.
This paper presents the application of the continuous sensitivity equation method (CSEM) to fast evaluation of nearby flows and to uncertainty analysis for shape parameters. The flow and sensitivity fields are solved using an adaptive finite-element method. A new approach is presented to extract accurate flow derivatives at the boundary, which are needed in the shape sensitivity boundary conditions. Boundary derivatives are evaluated via high order Taylor series expansions used in a constrained least-squares procedure. The proposed method is first applied to fast evaluation of nearby flows: the baseline flow and sensitivity fields around a NACA 0012 airfoil are used to predict the flow around airfoils with nearby shapes obtained by modifications of the thickness (NACA 0015), the angle of attack and the camber (NACA 4512). The method is then applied to evaluate the influence of geometrical uncertainties on the flow around a NACA 0012 airfoil.  相似文献   

11.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

12.
A two-dimensional aerodynamics representation analysis is introduced for the investigation of inviscid flowfields of unsteady airfoils. The problem of the unsteady flow of a two-dimensional NACA airfoil is therefore reduced to the solution of a non-linear multidimensional singular integral equation, when the form of the source and vortex strength distribution is dependent on the history of the above distribution on the NACA airfoil surface. An application is given to the determination of the velocity and pressure coefficient field around an aircraft by assuming constant source distribution.  相似文献   

13.
基于当地流活塞理论的气动弹性计算方法研究   总被引:8,自引:1,他引:8  
张伟伟  叶正寅 《力学学报》2005,37(5):632-639
发展了一种高效、高精度的超音速、高超音速非定常气动力计算 方法------基于定常CFD技术的当地流活塞理论. 运用当地流活塞理论计算非定常 气动力,耦合结构运动方程,实现超音速、高超音速气动弹性的时域模拟. 运用这 种方法计算了一系列非定常气动力算例和颤振算例,并和原始活塞理论、非定 常Euler方程结果作了比较. 由于局部地使用活塞理论假设,这种方法大大地克服 了原始活塞理论对飞行马赫数、翼型厚度和飞行迎角的 限制. 与非定常Euler方程方法相比,当地流活塞理论的效率很高.  相似文献   

14.
由仿生学原理构建的可渗透翼型对湍流气动噪声抑制作用已展现良好的应用前景。对NACA 0012可渗透翼型和实体翼型进行了数值计算,得到了声涡相互作用下气动噪声声场和流场,分析了可渗透壁对翼型流场和声场的影响。研究表明,相对实体翼型,可渗透壁通过减小声源强度降低了主纯音噪声声压级幅值和远场总声压级,消除了高阶离散纯音,但对噪声的指向性没有较大改变。进一步的流场分析表明,可渗透壁对翼型气动性能影响不大的情况下能够降低边界层扰动和翼型后缘大尺度涡旋强度,并推迟分离泡转捩和再附位置。  相似文献   

15.
The Lagrangian vortex method for solving the Navier-Stokes equations is applied for numerically modeling the unsteady flow past a wing airfoil executing angular oscillations in a viscous incompressible flow. Formulas relating the unsteady forces on the airfoil and the vorticity field are derived. The calculated results are compared with the experimental data for the NACA-0012 airfoil executing harmonic oscillations in an air flow at the Reynolds number Re = 4.4 × 104.  相似文献   

16.
In this paper we investigate local adaptive refinement of unstructured hexahedral meshes for computations of the flow around the DU91 wind turbine airfoil. This is a 25% thick airfoil, found at the mid‐span section of a wind turbine blade. Wind turbine applications typically involve unsteady flows due to changes in the angle of attack and to unsteady flow separation at high angles of attack. In order to obtain reasonably accurate results for all these conditions one should use a mesh which is refined in many regions, which is not computationally efficient. Our solution is to apply an automated mesh adaptation technique. In this paper we test an adaptive refinement strategy developed for unstructured hexahedral meshes for steady flow conditions. The automated mesh adaptation is based on local flow sensors for pressure, velocity, density or a combination of these flow variables. This way the mesh is refined only in those regions necessary for high accuracy, retaining computational efficiency. A validation study is performed for two cases: attached flow at an angle of 6° and separated flow at 12°. The results obtained using our adaptive mesh strategy are compared with experimental data and with results obtained with an equally sized non‐adapted mesh. From these computations it can be concluded that for a given computing time, adapted meshes result in solutions closer to the experimental data compared to non‐adapted meshes for attached flow. Finally, we show results for unsteady computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Flow past multi-element airfoil is studied via two-dimensional numerical simulations. The incompressible Reynolds averaged Navier–Stokes equations, in primitive variables, are solved using a stabilized finite element formulation. The Spalart–Allmaras and Baldwin–Lomax models are employed for turbulence closure. The implementation of the Spalart–Allmaras model is verified by computing flow over a flat plate with a specified trip location. Good agreement is seen between the results obtained with the two models for flow past a NACA 0012 airfoil at 5° angle of attack. Results for the multi-element airfoil, with the two turbulence models, are compared with experiments for various angles of attack. In general, the pressure distribution, from both the models matches quite well with the experimental results. However, at larger angles of attack, the computational results overpredict the suction peak on the slat. The velocity profiles from the Baldwin–Lomax model are, in general, more diffused compared to those from the Spalart–Allmaras model. The agreement between the computed and experimental results is not too good in the flap region for large angles of attack. Both the models are unable to predict the stall; the flow remains attached even for relatively large angles of attack. Consequently, the lift coefficient is over predicted at large α by the computations. Overall, compared to the Baldwin–Lomax model, the predictions from the Spalart–Allmaras model are closer to experimental measurements.  相似文献   

18.
Aerodynamic characteristics of two-dimensional membrane airfoils were experimentally investigated in a wind tunnel. The effects of the membrane pre-strain and excess length on the unsteady aspects of the fluid–structure interaction were studied. The deformation of the membrane as a function of angle of attack and free-stream velocity was measured using a high-speed camera. These measurements were complemented by the measurements of unsteady velocity field with a high frame-rate Particle Image Velocimetry (PIV) system as well as smoke visualization. Membrane airfoils with excess length exhibit higher vibration modes, earlier roll-up of vortices, and smaller separated flow regions, whereas the membranes with pre-strain generally behave more similarly to a rigid airfoil. Measured frequencies of the membrane vibrations suggest a possible coupling with the wake instabilities at high incidences for all airfoils.  相似文献   

19.
平板大攻角绕流升力和阻力系数的计算   总被引:1,自引:0,他引:1  
二维平板或二维对称薄翼型大攻角绕流升力和阻力系数与攻角之间存在的函数关系一般用数据表格的形式给出。本文根据垂直平板绕流阻力实验数据和对称薄翼型全攻角绕流实验数据,分析得到了平板大攻角绕流总压力及其升力分量和阻力分量系数的近似计算公式。结果表明:平板总压力系数约等于攻角正弦值的2倍;总压力的阻力分量系数约等于攻角正弦值平方的2倍;升力分量系数约为攻角2倍的正弦值。计算结果与两组试验数据具有较好的一致性。  相似文献   

20.
Airfoil performance degradation in heavy rain has attracted many aeronautical researchers’ eyes. In this work, a two-way momentum coupled Eulerian–Lagrangian approach is developed to study the aerodynamic performance of a NACA 0012 airfoil in heavy rain environment. Scaling laws are implemented for raindrop particles. A random walk dispersion approach is adopted to simulate raindrop dispersion due to turbulence in the airflow. Raindrop impacts, splashback and formed water film are modeled with the use of a thin liquid film model. The steady-state incompressible air flow field and the raindrop trajectory are calculated alternately through a curvilinear body-fitted grid surrounding the airfoil by incorporating an interphase momentum coupling term. Our simulation results of aerodynamic force coefficients agree well with the experimental results and show significant aerodynamic penalties at low angles of attack for the airfoil in heavy rain. An about 3° rain-induced increase in stall angle of attack is predicted. The loss of boundary momentum by raindrop splashback and the effective roughening of the airfoil surface due to an uneven water film are testified to account for the degradation of airfoil aerodynamic efficiency in heavy rain environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号