首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Possible geometrical structures and relative stabilities of (F2AlN3) n (n = 1–4) clusters were studied using density functional theory at the B3LYP/6-311+G* level. The optimized clusters (F2AlN3) n (n = 2–4) possess cyclic structure containing Al–Nα–Al linkages, and azido in azides has linear structure. The IR spectra of the optimized (F2AlN3) n (n = 1–4) clusters have three vibrational sections, the whole strongest vibrational peaks lie in 2218–2246 cm−1, and the vibrational modes are N3 asymmetric stretching vibrations. Trends in thermodynamic properties with temperature and oligomerization degree n are discussed, respectively. A study of their thermodynamic properties suggests that monomer 1A forms the most stable clusters (2A, 3A, and 4B) can occur spontaneously in the gas phase at temperatures up to 800 K.  相似文献   

3.
4.
The efficiency of AlAg n (n = 1–3) alloy clusters toward CO oxidation is demonstrated from first-principles theory. It is found that these subnanometer species transform into reaction complexes which catalyze CO oxidation through the Langmuir–Hinshelwood path. It is shown that mixing two different metals (Al and Ag) can have beneficial effects on the catalytic activity and the alloyed AlAg3 cluster is proposed as the best effective nanocatalysts.  相似文献   

5.
《Chemical physics letters》2001,331(1-2):119-127
The signals of anionic sulfur clusters are intense in the mass spectrum of sulfur clusters generated in direct laser vaporization. We have acquired numerous isomers of sulfur clusters by means of the B3LYP DFT method. According to total energies, the most stable Sn (n=3–13) isomers are predicted. The helical Sn (n=14–20) structures are also calculated. Most of the anionic clusters are with chain configurations; the ring clusters with threefold atom(s) are higher in total energy. The most stable forms of isomers, from S9 to S13, show helical configurations that are completely different from those of the corresponding neutral and cationic clusters.  相似文献   

6.
Structural Chemistry - In the present study electronic structure and stabilities of cationic gold-doped germanium clusters, AuGen (n?=?1 to 20), and their assemblies have been...  相似文献   

7.
A series of ethylene oxide derivations, C2OH4?Cn (NO2) n (x?=?1?C4), has been designed computationally. We calculated the heats of formation (HOFs), bond dissociation energy (BDE), and explosive performances (detonation velocity and detonation pressure) of the title compounds by using density functional theory with 6-311G** basis set. The results show that most of ethylene oxide derivations have positive HOFs values except I. All the calculated BDE and the bond dissociation energies without zero-point energy corrections (BDE0) are larger than 200?kJ?mol?1, which indicate that all the ethylene oxide derivations have good thermal stabilities. The explosive performances of most of ethylene oxide derivations would rank up with cyclotrimethylenetrinitramine (RDX). The results have not only shown that these compounds may be used as high energy density compounds, but also provide some useful information for further syntheses.  相似文献   

8.
The possible existence of the gas phase cis- and trans-maleate, i.e. completely deprotonated maleic acid (O2C–CΗ=CΗ–CO2)2–, is investigated by density functional (B3LYP) and ab-initio quantum chemical methods (MP2, CCSD(T)) using large basis sets. The calculations reveal that only the trans-isomer is Coulomb stable with respect to electron loss. The results are compared to other previously investigated dicarboxylate dianions of the general form ?O2C–R–CO2 ? with R = C2, C2X2, C2X4, and C6X4 (X = H, F). Fluorine substitution on the carbon framework helps to stabilize these doubly charged systems, and we predict that all of the aromatic fluorine substituted dicarboxylate dianions are Coulomb stable in the gas phase. Only the highest levels of theory reveal the slight stabilization of both the succinate dianion and the ortho-isomer of the phthalic acid dianion in unprecedented agreement with experiments.  相似文献   

9.
The adsorption of the potassium atom onto the surface of (n,0) zigzag nanotube (n = 5–10) and (n,n) armchair nanotubes (n = 3, 5) has been studied by density functional theory. The local density approximation calculation of adsorption energy (E ads) emphasized on the dependency of E ads to the diameter and chirality of the nanotube. E ads decreases when the diameter increases. So the (5,0)-K system has the highest adsorption energy among all structures. Furthermore, a significant change was observed in the electronic properties of potassium-adsorbed single-walled carbon nanotube (SWCNT) and the metallic behavior of the nanotube improved. Therefore, our results showed that such modified SWCNTs can be applied in nanodevices such as transistors.  相似文献   

10.
The ground-state geometrical and electronic properties of neutral and charged M n C2 (M = Fe, Co, Ni, Cu; n = 1–5) clusters are systematically investigated by density-functional calculations. The growth evolution trends of neutral and charged Fe n C2, Co n C2, Ni n C2 and Cu n C2 (n = 1–5) clusters are all from lower to higher dimensionality, while it is special for Cu n C 2 ± (n = 1–5) clusters which favor planer growth model. The space directional distributions of Co and Ni indicate stronger magnetic anisotropy than that in Cu atoms. Compare with experimental data (photoelectron spectroscopy), our results are in good agreement. The interaction strengths between metal and carbon atoms in TM–C (TM = Fe, Co, Ni) clusters are comparable and are obviously larger than that in Cu–C clusters, and this interaction strengths also decrease through the sequence: cation > neutral > anion, which may be crucial in exploring the differences in the growth mechanisms of metal–carbon nano-materials.  相似文献   

11.
《Chemical physics》2001,263(2-3):255-262
Clusters of the form CrSin (n=1–6) were investigated computationally using a density functional approach. In particular, geometry optimizations were carried out under the constraint of well-defined point group symmetries at the B3LYP level employing a pseudopotential method in conjunction with double zeta basis sets. In this article, the resulting total energies, Mulliken atomic net populations, overlap populations, fragmentation energies and geometries of CrSin (n=1–6) are presented and discussed, together with natural populations and natural electron configurations. In addition, we comment on the charge transfer within the clusters. From this analysis, the 3d orbital of the Cr atom in CrSin (n=1–6) cluster absorbs electrons. From this tendency, conclusions are drawn with respect to the electronic populations and the chemical bond between Si and Cr as well as Si and Si.  相似文献   

12.
The density functional theory (DFT) calculations within the framework of generalized gradient approximation have been employed to systematically investigate the geometrical structures, stabilities, and electronic properties of Pd n Si q (n = 1–7 and q = 0, +1, ?1) clusters and compared them with the pure ${\text{Pd}}_{n + 1}^{q}$ (n = 1–7 and q = 0, +1, ?1) clusters for illustrating the effect of doping Si atom into palladium nanoclusters. The most stable configurations adopt a three-dimensional structure for both pure and Si-doped palladium clusters at n = 3–7. As a result of doping, the Pd n Si clusters adopt different geometries as compared to that of Pd n+1. A careful analysis of the binding energies per atom, fragmentation energies, second-order difference of energies, and HOMO–LUMO energy gaps as a function of cluster size shows that the clusters ${\text{Pd}}_{4}^{ + }$ , ${\text{Pd}}_{4}$ , ${\text{Pd}}_{8}^{ - }$ , ${\text{Pd}}_{5} {\text{Si}}^{0, + , - }$ , and ${\text{Pd}}_{7} {\text{Si}}^{0, + , - }$ possess relatively higher stability. There is enhancement in the stabilities of palladium frameworks due to doping with an impurity atom. In addition, the charge transfer has been analyzed to understand the effect of doped atom and compared further.  相似文献   

13.
14.
Density functional theory calculations, with an effective core potential for the copper ion, and large polarized basis set functions have been used to construct the potential energy surface of the Cu+·(CO)n (n = 1–3) complexes. A linear configuration is obtained for the global minimum of the Cu+·CO and Cu+·(CO)2 complexes with a bond dissociation energy (BDE) of 35.9 and 40.0 kcal mol-1, respectively. For the Cu+·(CO)3 complex, a trigonal planar geometry is obtained for the global minimum with a BDE of 16.5 kcal mol?1. C-coordinated copper ion complexes exhibit stronger binding energy than O-coordinated complexes as a result of Clp → 4s σ-donation. The computed sequential BDEs of Cu+·(CO)n (n = 1–4) complexes agree well with experimental findings, in which the electrostatic energy and σ-donation play an important role in the observed trend.  相似文献   

15.
16.
The isothermal (20°C) solubility of fullerene C70 in solvents of the homologous series of monocarboxylic acids C n ? 1H2n ? 1COOH (n = 1–9) and polythermal solubility over the temperature range 20–80°C of fullerene C70 in solvents of the homologous series of monocarboxylic acids C n ? 1H2n ? 1COOH (n = 4–9) were studied. The corresponding solubility diagrams were obtained and characterized.  相似文献   

17.
《Chemical physics》2003,294(2):211-220
Clusters of the type CunN0,±1 (n=1–4) are investigated computationally using density functional theory methods. Equilibrium geometries are optimized under the constraint of well-defined point-group symmetries at the B3LYP level employing a pseudo-potential method in conjunction with double-zeta basis sets. In this article, different molecular properties such as total energies, electron affinities, ionization potentials, fragmentation energies and equilibrium geometries of the CunN0,±1 (n=1–4) clusters are systematically calculated and discussed. In particular, the photoelectron spectra of the anionic CunN−1 (n=2–4) clusters are calculated showing a good agreement with the available experimental results. In addition, Mulliken and natural orbital population analyses, and natural orbital configurations are calculated in order to elucidate the charge distributions in the clusters.  相似文献   

18.
Density functional theory (DFT) method with B3LYP functional and 6-311++G(d,p) basis set has been used to predict the geometries, relative stabilities, electronic structures and bonding analysis of Mixed AlmBn?mH n 2? and CmBn?mH n 2?m (n = 6, 10, 12 and m = 1, 2) clusters; being compared to the BnH n 2? ones. Therefore, the DFT results suggest that the replacing of boron by aluminium or carbon is governed by Natural net charges following Gimar’s and Williams’s rules. The AlmBn?mH n 2? structures are relatively distorted compared to those of BnH n 2? and CmBn?mH n 2?m . In AlmBn?mH n 2? structures Al atoms prefer the adjacent sites, however for the C2Bn?2Hn cluster cages, the carbon atoms are positioned at diametrically opposed sites. The large HOMO–LUMO gaps show that the predicted clusters have chemical stabilities, principally, those of AlmBn?mH n 2? ones, which are not experimentally isolated. The optimized geometries obtained through boron substitution by Al and C lead to compactness and to contracted structures, respectively, where B–B bonds are the shortest in mono- and di-carbaboranes.  相似文献   

19.
20.
The hybrid HF/DFT method B3LYP has been employed to investigate the geometrical and electronic structures of AuC n (n = 1–11) clusters. The properties such as geometrical parameters and electronic energies are determined for open-chain and cyclic species. Our results indicate that the open-chain structures with low spin states (doublet) are more stable than the cyclic ones for the small sizes clusters (n ≤ 9), as the cluster sizes increase (n = 10, 11), the cyclic species are more stable. The incremental binding energies show a smooth even–odd alternation phenomenon for open-chain species, n-even (n is the numbers of C atom in the clusters) species have the stronger stabilities relative to the adjacent odd-numbered ones. In addition, the most favorable dissociation channels are determined by calculating the fragmentation energies accompanying various possible pathways. The studied clusters incline to be dissociated to Au + C n and AuC n?3 + C3 fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号