首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Let C be a convex d-dimensional body. If \(\rho \) is a large positive number, then the dilated body \(\rho C\) contains \(\rho ^{d}\left| C\right| +\mathcal {O}\left( \rho ^{d-1}\right) \) integer points, where \(\left| C\right| \) denotes the volume of C. The above error estimate \(\mathcal {O}\left( \rho ^{d-1}\right) \) can be improved in several cases. We are interested in the \(L^{2}\)-discrepancy \(D_{C}(\rho )\) of a copy of \(\rho C\) thrown at random in \(\mathbb {R}^{d}\). More precisely, we consider where \(\mathbb {T}^{d}=\) \(\mathbb {R}^{d}/\mathbb {Z}^{d}\) is the d-dimensional flat torus and \(SO\left( d\right) \) is the special orthogonal group of real orthogonal matrices of determinant 1. An argument of Kendall shows that \(D_{C}(\rho )\le c\ \rho ^{(d-1)/2}\). If C also satisfies the reverse inequality \(\ D_{C}(\rho )\ge c_{1} \ \rho ^{(d-1)/2}\), we say that C is \(L^{2}\) -regular. Parnovski and Sobolev proved that, if \(d>1\), a d-dimensional unit ball is \(L^{2} \)-regular if and only if \(d\not \equiv 1\ ({\text {mod}}4)\). In this paper we characterize the \(L^{2}\)-regular convex polygons. More precisely, we prove that a convex polygon is not \(L^{2}\)-regular if and only if it can be inscribed in a circle and it is symmetric about the centre.
  相似文献   

2.
The paper proves that for any ε > 0 there exists ameasurable set E ? [0, 1] with measure |E| > 1 ? ε such that for each f ∈ L1[0, 1] there is a function \(\tilde f \in {L^1}\left[ {0,1} \right]\) coinciding with f on E whose Fourier-Walsh series converges to \(\tilde f\) in L1[0, 1]-norm, and the sequence \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \) is monotonically decreasing, where \(\left\{ {{c_k}\left( {\tilde f} \right)} \right\}\) is the sequence of Fourier-Walsh coefficients of \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \).  相似文献   

3.
Suppose that m ≥ 2, numbers p 1, …, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + \cdots + \frac{1}{{{p_m}}} < 1\), and functions \({\gamma _1} \in {L^{{p_1}}}\left( {{?^1}} \right), \cdots ,{\gamma _m} \in {L^{{p_m}}}\left( {{?^1}} \right)\) are given. It is proved that if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both notions were defined by the author for functions in L p (?1), p ∈ (1, +∞]), then \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\mathop \smallint \limits_a^b \prod\limits_{k = 1}^m {[{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)]} d\tau } \right| \leqslant C\prod\limits_{k = 1}^m {{{\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|}_{L_{ak}^{pk}\left( {{R^1}} \right)}}} \) where the constant C > 0 is independent of the functions \(\Delta {\gamma _k} \in L_{ak}^{pk}\left( {{?^1}} \right)\) and \(L_{ak}^{pk}\left( {{?^1}} \right) \subset {L^{pk}}\left( {{?^1}} \right)\), 1 ≤ km, are special normed spaces. A condition for the integral over ?1 of a product of functions to be bounded is also given.  相似文献   

4.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

5.
Let k be an odd positive integer, L a lattice on a regular positive definite k-dimensional quadratic space over \(\mathbb {Q}\), \(N_L\) the level of L, and \(\mathscr {M}(L)\)  be the linear space of \(\theta \)-series attached to the distinct classes in the genus of L. We prove that, for an odd prime \(p|N_L\), if \(L_p=L_{p,1}\,\bot \, L_{p,2}\), where \(L_{p,1}\) is unimodular, \(L_{p,2}\) is (p)-modular, and \(\mathbb {Q}_pL_{p,2}\) is anisotropic, then \(\mathscr {M}(L;p):=\) \(\mathscr {M}(L)\) \(+T_{p^2}.\) \(\mathscr {M}(L)\)  is stable under the Hecke operator \(T_{p^2}\). If \(L_2\) is isometric to \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}\frac{1}{2}\\ \frac{1}{2}&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle 2\varepsilon \rangle \) or \(\left( \begin{array}{ll}0&{}1\\ 1&{}0\end{array}\right) ^{\kappa }\,\bot \, \langle \varepsilon \rangle \) with \(\varepsilon \in \mathbb {Z}_2^{\times }\) and \(\kappa :=\frac{k-1}{2}\), then \(\mathscr {M}(L;2):=T_{2^2}.\mathscr {M}(L)+T_{2^2}^2.\,\mathscr {M}(L)\) is stable under the Hecke operator \(T_{2^2}\). Furthermore, we determine some invariant subspaces of the cusp forms for the Hecke operators.  相似文献   

6.
Let K be a non-polar compact subset of \(\mathbb {R}\) and μ K denote the equilibrium measure of K. Furthermore, let P n (?;μ K ) be the n-th monic orthogonal polynomial for μ K . It is shown that \(\|P_{n}\left (\cdot ; \mu _{K}\right )\|_{L^{2}(\mu _{K})}\), the Hilbert norm of P n (?;μ K ) in L 2(μ K ), is bounded below by Cap(K) n for each \(n\in \mathbb {N}\). A sufficient condition is given for\(\left (\|P_{n}\left (\cdot ;\mu _{K}\right )\|_{L^{2}(\mu _{K})}/\text {Cap}(K)^{n}\right )_{n=1}^{\infty }\) to be unbounded. More detailed results are presented for sets which are union of finitely many intervals.  相似文献   

7.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

8.
In this paper we continue to develop the topological method to get semigroup generators of semi-simple Lie groups. Consider a subset \(\Gamma \subset G\) that contains a semi-simple subgroup \(G_{1}\) of G. If one can show that \( \Gamma \) does not leave invariant a contractible subset on any flag manifold of G, then \(\Gamma \) generates G if \(\mathrm {Ad}\left( \Gamma \right) \) generates a Zariski dense subgroup of the algebraic group \(\mathrm {Ad}\left( G\right) \). The proof is reduced to check that some specific closed orbits of \(G_{1}\) in the flag manifolds of G are not trivial in the sense of algebraic topology. Here, we consider three different cases of semi-simple Lie groups G and subgroups \(G_{1}\subset G\).  相似文献   

9.
Let \(A=U|A|\) be the polar decomposition of A on a complex Hilbert space \({\mathscr {H}}\) and \(0<s,t\). Then \({\widetilde{A}}_{s, t}=|A|^sU|A|^t\) and \({\widetilde{A}}_{s, t}^{(*)}=|A^*|^sU|A^*|^t\) are called the generalized Aluthge transformation and generalized \(*\)-Aluthge transformation of A, respectively. A pair (AB) of operators is said to have the Fuglede–Putnam property (breifly, the FP-property) if \(AX=XB\) implies \(A^*X=XB^*\) for every operator X. We prove that if (AB) has the FP-property, then \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) and \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property for every \(s,t>0\) with \(s+t=1\). Also, we prove that \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) has the FP-property if and only if \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property, where AB are invertible and \( 0 < s, t \) with \( s + t =1\). Moreover, we prove that if \(0 < s, t\) and \({\widetilde{A}}_{s, t}\) is positive and invertible, then \(\left\| {\widetilde{A}}_{s, t}X-X{\widetilde{A}}_{s, t}\right\| \le \left\| A\right\| ^{2t}\left\| ({\widetilde{A}}_{s, t})^{-1}\right\| \left\| X\right\| \) for every operator X. Also, if \( 0 <s, t\) and X is positive, then \(\left\| |{\widetilde{A}}_{s, t}|^{2r} X-X|{\widetilde{A}}_{s, t}|^{2r}\right\| \le \frac{1}{2}\left\| |A|\right\| ^{2r}\left\| X\right\| \) for every \(r>0\).  相似文献   

10.
Given a partition \(\lambda \) of n, the Schur functor \({\mathbb {S}}_\lambda \) associates to any complex vector space V, a subspace \({\mathbb {S}}_\lambda (V)\) of \(V^{\otimes n}\). Hermite’s reciprocity law, in terms of the Schur functor, states that \({\mathbb {S}}_{(p)}\left( {\mathbb {S}}_{(q)}({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{(q)}\left( {\mathbb {S}}_{(p)}({\mathbb {C}}^2)\right) . \) We extend this identity to many other identities of the type \({\mathbb {S}}_{\lambda }\left( {\mathbb {S}}_{\delta }({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{\mu }\left( {\mathbb {S}}_{\epsilon }({\mathbb {C}}^2)\right) \).  相似文献   

11.
Let E be a Banach lattice on \({\mathbb {Z}}\) with order continuous norm. We show that for any function \(f = \{f_j\}_{j \in {\mathbb {Z}}}\) from the Hardy space \(\mathrm H_{\infty }\left( E \right) \) such that \(\delta \leqslant \Vert f (z)\Vert _E \leqslant 1\) for all z from the unit disk \({\mathbb {D}}\) there exists some solution \(g = \{g_j\}_{j \in {\mathbb {Z}}} \in \mathrm H_{\infty }\left( E' \right) \), \(\Vert g\Vert _{\mathrm H_{\infty }\left( E' \right) } \leqslant C_\delta \) of the Bézout equation \(\sum _j f_j g_j = 1\), also known as the vector-valued corona problem with data in \(\mathrm H_{\infty }\left( E \right) \).  相似文献   

12.
Let \(\mu \) and \(\nu \) be measures supported on \(\left( -1,1\right) \) with corresponding orthonormal polynomials \(\left\{ p_{n}^{\mu }\right\} \) and \( \left\{ p_{n}^{\nu }\right\} \), respectively. Define the mixed kernel
$$\begin{aligned} K_{n}^{{\mu },\nu }\left( x,y\right) =\sum _{j=0}^{n-1}p_{j}^{\mu }\left( x\right) p_{j}^{\nu }\left( y\right) . \end{aligned}$$
We establish scaling limits such as
$$\begin{aligned}&\lim _{n\rightarrow \infty }\frac{\pi \sqrt{1-\xi ^{2}}\sqrt{\mu ^{\prime }\left( \xi \right) \nu ^{\prime }\left( \xi \right) }}{n}K_{n}^{\mu ,\nu }\left( \xi +\frac{a\pi \sqrt{1-\xi ^{2}}}{n},\xi +\frac{b\pi \sqrt{1-\xi ^{2}}}{n}\right) \\&\quad =S\left( \frac{\pi \left( a-b\right) }{2}\right) \cos \left( \frac{\pi \left( a-b\right) }{2}+B\left( \xi \right) \right) , \end{aligned}$$
where \(S\left( t\right) =\frac{\sin t}{t}\) is the sinc kernel, and \(B\left( \xi \right) \) depends on \({\mu },\nu \) and \(\xi \). This reduces to the classical universality limit in the bulk when \(\mu =\nu \). We deduce applications to the zero distribution of \(K_{n}^{{\mu },\nu }\), and asymptotics for its derivatives.
  相似文献   

13.
In this paper we give several characterizations of almost limited operators. Mainly, it is proved that an operator \(T:X\rightarrow E\) from a Banach space X into a \(\sigma \)-Dedekind complete Banach lattice E is almost limited if and only if \(\left\| T^{*}\left( f_{n}\right) \right\| \rightarrow 0\) for every positive weak\(^{*}\) null sequence \(\left( f_{n}\right) \) of \(E^{*}\). Moreover, we present some interesting connections between almost limited, almost Dunford–Pettis and limited operators.  相似文献   

14.
Given a smooth, symmetric and homogeneous of degree one function \(f\left( \lambda _{1},\ldots ,\lambda _{n}\right) \) satisfying \(\partial _{i}f>0\quad \forall \,i=1,\ldots , n\), and a properly embedded smooth cone \({\mathcal {C}}\) in \({\mathbb {R}}^{n+1}\), we show that under suitable conditions on f, there is at most one f self-shrinker (i.e. a hypersurface \(\Sigma \) in \({\mathbb {R}}^{n+1}\) satisfying \(f\left( \kappa _{1},\ldots ,\kappa _{n}\right) +\frac{1}{2}X\cdot N=0\), where \(\kappa _{1},\ldots ,\kappa _{n}\) are principal curvatures of \(\Sigma \)) that is asymptotic to the given cone \({\mathcal {C}}\) at infinity.  相似文献   

15.
We give explicit analytic criteria for two problems associated with the Schrödinger operator H=-Δ+Q on L2(? n ) where QD’(? n ) is an arbitrary real- or complex-valued potential.
First, we obtain necessary and sufficient conditions on Q so that the quadratic form \(\langle{Q}\cdot,\ \cdot\rangle\) has zero relative bound with respect to the Laplacian. For QL1loc(? n ), this property can be expressed in the form of the integral inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2 Q(x) dx \right\vert\leq\epsilon\| \nabla u \|^2_{L^2(\mathbb{R}^n)} + C(\epsilon) \|u \|^2_{L^2(\mathbb{R}^n)}, \quad\forall u \in C^{\infty}_0(\mathbb{R}^n),$
for an arbitrarily small ε>0 and some C(ε)>0. One of the major steps here is the reduction to a similar inequality with nonnegative function \(|\nabla(1-\Delta)^{-1} Q|^2 + |(1-\Delta)^{-1} Q|\) in place of Q. This provides a complete solution to the infinitesimal form boundedness problem for the Schrödinger operator, and leads to new broad classes of admissible distributional potentials Q, which extend the usual L p and Kato classes, as well as those based on the well-known conditions of Fefferman–Phong and Chang–Wilson–Wolff.
Secondly, we characterize Trudinger’s subordination property where C(ε) in the above inequality is subject to the condition C(ε)≤cε(β>0) as ε→+0. Such quadratic form inequalities can be understood entirely in the framework of Morrey–Campanato spaces, using mean oscillations of \(\nabla(1-\Delta)^{-1}Q\) and \((1-\Delta)^{-1}Q\) on balls or cubes. A version of this condition where ε∈(0,+∞) is equivalent to the multiplicative inequality:
$\left\vert\int_{\mathbb{R}^n} |u(x)|^2Q(x)dx\right\vert\leq{C}\|\nabla{u}\|^{2p}_{L^2(\mathbb{R}^n)}\|u\|^{2(1-p)}_{L^2(\mathbb{R}^n)},\quad\forall{u}\in{C}^\infty_0(\mathbb{R}^n),$
with \(p=\frac\beta{1 + \beta}\in(0,1)\). We show that this inequality holds if and only if \(\nabla\Delta^{-1} Q \in{BMO}(\mathbb{R}^n)\) if \(p=\frac{1}{2}\). For \(0 < p < \frac{1}{2}\), it is valid whenever \(\nabla\Delta^{-1}Q\) is Hölder-continuous of order 1-2p, or respectively lies in the Morrey space \(\mathcal{L}^{2,\lambda}\) with λ=n+2-4p if \(\frac{1}{2} < p < 1\). As a consequence, we characterize completely the class of those Q which satisfy an analogous multiplicative inequality of Nash’s type, with \(\|u\|_{L^1(\mathbb{R}^n)}\) in placeof \(\|u\|_{L^2(\mathbb{R}^n)}\).
These results are intimately connected with spectral theory and dynamics of the Schrödinger operator, and elliptic PDE theory.  相似文献   

16.
Let \(B_\ell (n)\) denote the number of \(\ell \)-regular bipartitions of n. In this paper, we prove several infinite families of congruences satisfied by \(B_\ell (n)\) for \(\ell \in {\{5,7,13\}}\). For example, we show that for all \(\alpha >0\) and \(n\ge 0\),
$$\begin{aligned} B_5\left( 4^\alpha n+\frac{5\times 4^\alpha -2}{6}\right)\equiv & {} 0 \ (\text {mod}\ 5),\\ B_7\left( 5^{8\alpha }n+\displaystyle \frac{5^{8\alpha }-1}{2}\right)\equiv & {} 3^\alpha B_7(n)\ (\text {mod}\ 7) \end{aligned}$$
and
$$\begin{aligned} B_{13}\left( 5^{12\alpha }n+5^{12\alpha }-1\right) \equiv B_{13}(n)\ (\text {mod}\ 13). \end{aligned}$$
  相似文献   

17.
Let Ω be an open, simply connected, and bounded region in \(\mathbb {R}^{d}\), d ≥ 2, and assume its boundary ?Ω is smooth and homeomorphic to \(\mathbb {S}^{d-1}\). Consider solving an elliptic partial differential equation L u = f(?, u) over Ω with zero Dirichlet boundary value. The function f is a nonlinear function of the solution u. The problem is converted to an equivalent elliptic problem over the open unit ball \(\mathbb {B}^{d}\) in \(\mathbb {R}^{d}\), say \(\widetilde {L}\widetilde {u} =\widetilde {f}(\cdot ,\widetilde {u})\). Then a spectral Galerkin method is used to create a convergent sequence of multivariate polynomials \(\widetilde {u} _{n}\) of degree ≤ n that is convergent to \(\widetilde {u}\). The transformation from Ω to \(\mathbb {B}^{d}\) requires a special analytical calculation for its implementation. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty } \left (\overline {\Omega }\right ) \) and assuming ?Ω is a C boundary, the convergence of \(\left \Vert \widetilde {u} -\widetilde {u}_{n}\right \Vert _{H^{1}}\) to zero is faster than any power of 1/n. The error analysis uses a reformulation of the boundary value problem as an integral equation, and then it uses tools from nonlinear integral equations to analyze the numerical method. Numerical examples illustrate experimentally an exponential rate of convergence. A generalization to ?Δu + γ u = f(u) with a zero Neumann boundary condition is also presented.  相似文献   

18.
An operator \(S_{\varphi ,\psi }^{u}\in \mathcal {L}(L^2)\) is called the dilation of a truncated Toeplitz operator if for two symbols \(\varphi ,\psi \in L^{\infty }\) and an inner function u,
$$\begin{aligned} S_{\varphi ,\psi }^{u}f=\varphi P_uf+\psi Q_uf \end{aligned}$$
holds for \(f\in {L}^{2}\) where \(P_{u}\) denotes the orthogonal projection of \(L^2\) onto the model space \(\mathcal { K}_{u}^2=H^2{\ominus }{{u}H^2}\) and \(Q_u=I-P_u.\) In this paper, we study properties of the dilation of truncated Toeplitz operators on \(L^{2}\). In particular, we provide conditions for the dilation of truncated Toeplitz operators to be normal. As some applications, we give several examples of such operators.
  相似文献   

19.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

20.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号