首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(\pi :{\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\rightarrow {\mathbb {P}}^{n-1}\) be a projective bundle over \({\mathbb {P}}^{n-1}\) with \(1\le k \le n-1\). We denote \({\mathbb {P}}({\mathcal {O}}(0)\oplus {\mathcal {O}}(k))\) by \(N_{k}^{n}\) and endow it with the U(n)-invariant gradient shrinking Kähler Ricci soliton structure constructed by Cao (Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, 1996) and Koiso (Recent topics in differential and analytic geometry. Advanced studies in pure mathematics, Boston, 1990). In this paper, we show that lens space \(L(k\, ;1)(r)\) with radius r embedded in \(N_{k}^{n}\) is a self-similar solution. We also prove that there exists a pair of critical radii \(r_{1}<r_{2}\), which satisfies the following. The lens space \(L(k\, ;1)(r)\) is a self-shrinker if \(r<r_{2}\) and self-expander if \(r_{2}<r\), and the Ricci-mean curvature flow emanating from \(L(k\, ;1)(r)\) collapses to the 0-section of \(\pi \) if \(r<r_{1}\) and to the \(\infty \)-section of \(\pi \) if \(r_{1}<r\). This paper gives explicit examples of Ricci-mean curvature flows.  相似文献   

2.
In this paper, we study the harmonic equation involving subcritical exponent \((P_{\varepsilon })\): \( \Delta u = 0 \), in \(\mathbb {B}^n\) and \(\displaystyle \frac{\partial u}{\partial \nu } + \displaystyle \frac{n-2}{2}u = \displaystyle \frac{n-2}{2} K u^{\frac{n}{n-2}-\varepsilon }\) on \( \mathbb {S}^{n-1}\) where \(\mathbb {B}^n \) is the unit ball in \(\mathbb {R}^n\), \(n\ge 5\) with Euclidean metric \(g_0\), \(\partial \mathbb {B}^n = \mathbb {S}^{n-1}\) is its boundary, K is a function on \(\mathbb {S}^{n-1}\) and \(\varepsilon \) is a small positive parameter. We construct solutions of the subcritical equation \((P_{\varepsilon })\) which blow up at two different critical points of K. Furthermore, we construct solutions of \((P_{\varepsilon })\) which have two bubbles and blow up at the same critical point of K.  相似文献   

3.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

4.
In Bonini et al. (Adv Math 280:506–548, 2015), the authors develop a global correspondence between immersed weakly horospherically convex hypersurfaces \(\phi :M^n \rightarrow \mathbb {H}^{n+1}\) and a class of conformal metrics on domains of the round sphere \(\mathbb {S}^n\). Some of the key aspects of the correspondence and its consequences have dimensional restrictions \(n\ge 3\) due to the reliance on an analytic proposition from Chang et al. (Int Math Res Not 2004(4):185–209, 2004) concerning the asymptotic behavior of conformal factors of conformal metrics on domains of \(\mathbb {S}^n\). In this paper, we prove a new lemma about the asymptotic behavior of a functional combining the gradient of the conformal factor and itself, which allows us to extend the global correspondence and embeddedness theorems of Bonini et al. (2015) to all dimensions \(n\ge 2\) in a unified way. In the case of a single point boundary \(\partial _{\infty }\phi (M)=\{x\} \subset \mathbb {S}^n\), we improve these results in one direction. As an immediate consequence of this improvement and the work on elliptic problems in Bonini et al. (2015), we have a new, stronger Bernstein type theorem. Moreover, we are able to extend the Liouville and Delaunay type theorems from Bonini et al. (2015) to the case of surfaces in \(\mathbb {H}^{3}\).  相似文献   

5.
Permutation polynomials over finite fields have been studied extensively recently due to their wide applications in cryptography, coding theory, communication theory, among others. Recently, several authors have studied permutation trinomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\), where \(q=2^k\), \(h(x)=1+x^s+x^t\) and \(r, k>0, s, t\) are integers. Their methods are essentially usage of a multiplicative version of AGW Criterion because they all transformed the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing the corresponding fractional polynomials permute a smaller set \(\mu _{q+1}\), where \(\mu _{q+1}:=\{x\in \mathbb {F}_{q^2} : x^{q+1}=1\}\). Motivated by these results, we characterize the permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\) such that \(h(x)\in {\mathbb F}_q[x]\) is arbitrary and q is also an arbitrary prime power. Using AGW Criterion twice, one is multiplicative and the other is additive, we reduce the problem of proving permutation polynomials over \({\mathbb F}_{q^2}\) into that of showing permutations over a small subset S of a proper subfield \({\mathbb F}_{q}\), which is significantly different from previously known methods. In particular, we demonstrate our method by constructing many new explicit classes of permutation polynomials of the form \(x^rh\left( x^{q-1}\right) \) over \({\mathbb F}_{q^2}\). Moreover, we can explain most of the known permutation trinomials, which are in Ding et al. (SIAM J Discret Math 29:79–92, 2015), Gupta and Sharma (Finite Fields Appl 41:89–96, 2016), Li and Helleseth (Cryptogr Commun 9:693–705, 2017), Li et al. (New permutation trinomials constructed from fractional polynomials, arXiv: 1605.06216v1, 2016), Li et al. (Finite Fields Appl 43:69–85, 2017) and Zha et al. (Finite Fields Appl 45:43–52, 2017) over finite field with even characteristic.  相似文献   

6.
Let \(\Omega \subset {\mathbb R}\) be a compact set with measure 1. If there exists a subset \(\Lambda \subset {\mathbb R}\) such that the set of exponential functions \(E_{\Lambda }:=\{e_\lambda (x) = e^{2\pi i \lambda x}|_\Omega :\lambda \in \Lambda \}\) is an orthonormal basis for \(L^2(\Omega )\), then \(\Lambda \) is called a spectrum for the set \(\Omega \). A set \(\Omega \) is said to tile \({\mathbb R}\) if there exists a set \(\mathcal T\) such that \(\Omega + \mathcal T = {\mathbb R}\), the set \(\mathcal T\) is called a tiling set. A conjecture of Fuglede suggests that spectra and tiling sets are related. Lagarias and Wang (Invent Math 124(1–3):341–365, 1996) proved that tiling sets are always periodic and are rational. That any spectrum is also a periodic set was proved in Bose and Madan (J Funct Anal 260(1):308–325, 2011) and Iosevich and Kolountzakis (Anal PDE 6:819–827, 2013). In this paper, we give some partial results to support the rationality of the spectrum.  相似文献   

7.
We develop structural insights into the Littlewood–Richardson graph, whose number of vertices equals the Littlewood–Richardson coefficient \(c_{\lambda ,\mu }^{\nu }\) for given partitions \(\lambda \), \(\mu \), and \(\nu \). This graph was first introduced in Bürgisser and Ikenmeyer (SIAM J Discrete Math 27(4):1639–1681, 2013), where its connectedness was proved. Our insights are useful for the design of algorithms for computing the Littlewood–Richardson coefficient: We design an algorithm for the exact computation of \(c_{\lambda ,\mu }^{\nu }\) with running time \(\mathcal {O}\big ((c_{\lambda ,\mu }^{\nu })^2 \cdot {\textsf {poly}}(n)\big )\), where \(\lambda \), \(\mu \), and \(\nu \) are partitions of length at most n. Moreover, we introduce an algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge t\) whose running time is \(\mathcal {O}\big (t^2 \cdot {\textsf {poly}}(n)\big )\). Even the existence of a polynomial-time algorithm for deciding whether \(c_{\lambda ,\mu }^{\nu } \ge 2\) is a nontrivial new result on its own. Our insights also lead to the proof of a conjecture by King et al. (Symmetry in physics. American Mathematical Society, Providence, 2004), stating that \(c_{\lambda ,\mu }^{\nu }=2\) implies \(c_{M\lambda ,M\mu }^{M\nu } = M+1\) for all \(M \in \mathbb {N}\). Here, the stretching of partitions is defined componentwise.  相似文献   

8.
We consider the equation \(-\Delta u = |u| ^{\frac{4}{n-2}}u + \varepsilon f(x) \) under zero Dirichlet boundary conditions in a bounded domain \(\Omega \) in \(\mathbb {R}^{n}\), \(n \ge 3\), with \(f\ge 0\), \(f\ne 0\). We find sign-changing solutions with large energy. The basic cell in the construction is the sign-changing nodal solution to the critical Yamabe problem
$$\begin{aligned} -\Delta w = |w|^{\frac{4}{n-2}} w, \quad w \in {\mathcal D}^{1,2} (\mathbb {R}^n) \end{aligned}$$
recently constructed in del Pino et al. (J Differ Equ 251(9):2568–2597, 2011).
  相似文献   

9.
Let \({\mathcal B}_{p,w}\) be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space \(L^p(\mathbb {R},w)\), where \(p\in (1,\infty )\) and w is a Muckenhoupt weight. We study the Banach subalgebra \(\mathfrak {A}_{p,w}\) of \({\mathcal B}_{p,w}\) generated by all multiplication operators aI (\(a\in \mathrm{PSO}^\diamond \)) and all convolution operators \(W^0(b)\) (\(b\in \mathrm{PSO}_{p,w}^\diamond \)), where \(\mathrm{PSO}^\diamond \subset L^\infty (\mathbb {R})\) and \(\mathrm{PSO}_{p,w}^\diamond \subset M_{p,w}\) are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of \(\mathbb {R}\cup \{\infty \}\), and \(M_{p,w}\) is the Banach algebra of Fourier multipliers on \(L^p(\mathbb {R},w)\). For any Muckenhoupt weight w, we study the Fredholmness in the Banach algebra \({\mathcal Z}_{p,w}\subset \mathfrak {A}_{p,w}\) generated by the operators \(aW^0(b)\) with slowly oscillating data \(a\in \mathrm{SO}^\diamond \) and \(b\in \mathrm{SO}^\diamond _{p,w}\). Then, under some condition on the weight w, we complete constructing a Fredholm symbol calculus for the Banach algebra \(\mathfrak {A}_{p,w}\) in comparison with Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 74:377–415, 2012) and Karlovich and Loreto Hernández (Integr. Equations Oper. Theory 75:49–86, 2013) and establish a Fredholm criterion for the operators \(A\in \mathfrak {A}_{p,w}\) in terms of their symbols. A new approach to determine local spectra is found.  相似文献   

10.
11.
We study isometric cohomogeneity one actions on the \((n+1)\)-dimensional Minkowski space \(\mathbb {L}^{n+1}\) up to orbit-equivalence. We give examples of isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\) whose orbit spaces are non-Hausdorff. We show that there exist isometric cohomogeneity one actions on \(\mathbb {L}^{n+1}\), \(n \ge 3\), which are orbit-equivalent on the complement of an n-dimensional degenerate subspace \(\mathbb {W}^n\) of \(\mathbb {L}^{n+1}\) and not orbit-equivalent on \(\mathbb {W}^n\). We classify isometric cohomogeneity one actions on \(\mathbb {L}^2\) and \(\mathbb {L}^3\) up to orbit-equivalence.  相似文献   

12.
This paper deals with variational inclusions of the form \(0 \in K-f(x)\) where \(f : \mathbb{R}^{n} \rightarrow \mathbb{R} ^{m}\) is a semismooth function and \(K\) is a nonempty closed convex cone in \(\mathbb{R}^{m}\). We show that the previous problem can be solved by a Newton-type method using the Clarke generalized Jacobian of \(f\). The results obtained in this paper extend those obtained by Robinson in the famous paper (Robinson in Numer. Math. 19:341–347, 1972). We provide a semilocal method with a superlinear convergence that is new in the context of semismooth functions. Finally, numerical results are also given to illustrate the convergence.  相似文献   

13.
A generalization of Mallat’s classic theory of multiresolution analysis (MRA) on local fields of positive characteristic was considered by Jiang et al. (J Math Anal Appl 294:523–532, 2004). In this paper, we present a notion of nonuniform MRA on local field \(K\) of positive characteristic. The associated subspace \(V_0\) of \(L^2(K)\) has an orthonormal basis, a collection of translates of the scaling function \(\varphi \) of the form \(\{ \varphi (x-\lambda ) \}_{ \lambda \in \Lambda }\) where \(\Lambda = \{ 0,r/N \}+ \mathcal{Z}, \,N \ge 1\) is an integer and \(r\) is an odd integer such that \(r\) and \(N\) are relatively prime and \(\mathcal{Z}=\{u(n): n\in \mathbb {N}_{0}\}\). We obtain the necessary and sufficient condition for the existence of associated wavelets and present an algorithm for the construction of nonuniform MRA on local fields starting from a low-pass filter \(m_{0}\) with appropriate conditions.  相似文献   

14.
Let A and B be two points of \(\mathop {\mathrm{PG}}(d,q^n)\) and let \(\Phi \) be a collineation between the stars of lines with vertices A and B, that does not map the line AB into itself. In this paper we prove that if \(d=2\) or \(d\ge 3\) and the lines \(\Phi ^{-1}(AB), AB, \Phi (AB) \) are not in a common plane, then the set \(\mathcal{C}\) of points of intersection of corresponding lines under \(\Phi \) is the union of \(q-1\) scattered \({\mathbb {F}}_{q}\)-linear sets of rank n together with \(\{A,B\}\). As an application we will construct, starting from the set \(\mathcal{C}\), infinite families of non-linear \((d+1, n, q;d-1)\)-MRD codes, \(d\le n-1\), generalizing those recently constructed in Cossidente et al. (Des Codes Cryptogr 79:597–609, 2016) and Durante and Siciliano (Electron J Comb, 2017).  相似文献   

15.
The Voronin universality theorem asserts that a wide class of analytic functions can be approximated by shifts \(\zeta (s+i\tau )\), \(\tau \in \mathbb {R}\), of the Riemann zeta-function. In the paper, we obtain a universality theorem on the approximation of analytic functions by discrete shifts \(\zeta (s+ix_kh)\), \(k\in \mathbb {N}\), \(h>0\), where \(\{x_k\}\subset \mathbb {R}\) is such that the sequence \(\{ax_k\}\) with every real \(a\ne 0\) is uniformly distributed modulo 1, \(1\le x_k\le k\) for all \(k\in \mathbb {N}\) and, for \(1\le k\), \(m\le N\), \(k\ne m\), the inequality \(|x_k-x_m| \ge y^{-1}_N\) holds with \(y_N> 0\) satisfying \(y_Nx_N\ll N\).  相似文献   

16.
Let \(\mathbb {H}^{n}=\mathbb {C}^{n}\times \mathbb {R}\) be the n-dimensional Heisenberg group, \(Q=2n+2\) be the homogeneous dimension of \(\mathbb {H}^{n}\). We extend the well-known concentration-compactness principle on finite domains in the Euclidean spaces of Lions (Rev Mat Iberoam 1:145–201, 1985) to the setting of the Heisenberg group \(\mathbb {H}^{n}\). Furthermore, we also obtain the corresponding concentration-compactness principle for the Sobolev space \({ HW}^{1,Q}(\mathbb {H}^{n}) \) on the entire Heisenberg group \(\mathbb {H}^{n}\). Our results improve the sharp Trudinger–Moser inequality on domains of finite measure in \(\mathbb {H}^{n}\) by Cohn and Lu (Indiana Univ Math J 50(4):1567–1591, 2001) and the corresponding one on the whole space \(\mathbb {H}^n\) by Lam and Lu (Adv Math 231:3259–3287, 2012). All the proofs of the concentration-compactness principles for the Trudinger–Moser inequalities in the literature even in the Euclidean spaces use the rearrangement argument and the Polyá–Szegö inequality. Due to the absence of the Polyá–Szegö inequality on the Heisenberg group, we will develop a different argument. Our approach is surprisingly simple and general and can be easily applied to other settings where symmetrization argument does not work. As an application of the concentration-compactness principle, we establish the existence of ground state solutions for a class of Q- Laplacian subelliptic equations on \(\mathbb {H}^{n}\):
$$\begin{aligned} -\mathrm {div}\left( \left| \nabla _{\mathbb {H}}u\right| ^{Q-2} \nabla _{\mathbb {H}}u\right) +V(\xi ) \left| u\right| ^{Q-2}u=\frac{f(u) }{\rho (\xi )^{\beta }} \end{aligned}$$
with nonlinear terms f of maximal exponential growth \(\exp (\alpha t^{\frac{Q}{Q-1}})\) as \(t\rightarrow +\infty \). All the results proved in this paper hold on stratified groups with the same proofs. Our method in this paper also provide a new proof of the classical concentration-compactness principle for Trudinger-Moser inequalities in the Euclidean spaces without using the symmetrization argument.
  相似文献   

17.
In this paper, we investigate solutions of the hyperbolic Poisson equation \(\Delta _{h}u(x)=\psi (x)\), where \(\psi \in L^{\infty }(\mathbb {B}^{n}, {\mathbb R}^n)\) and
$$\begin{aligned} \Delta _{h}u(x)= (1-|x|^2)^2\Delta u(x)+2(n-2)\left( 1-|x|^2\right) \sum _{i=1}^{n} x_{i} \frac{\partial u}{\partial x_{i}}(x) \end{aligned}$$
is the hyperbolic Laplace operator in the n-dimensional space \(\mathbb {R}^n\) for \(n\ge 2\). We show that if \(n\ge 3\) and \(u\in C^{2}(\mathbb {B}^{n},{\mathbb R}^n) \cap C(\overline{\mathbb {B}^{n}},{\mathbb R}^n )\) is a solution to the hyperbolic Poisson equation, then it has the representation \(u=P_{h}[\phi ]-G_{ h}[\psi ]\) provided that \(u\mid _{\mathbb {S}^{n-1}}=\phi \) and \(\int _{\mathbb {B}^{n}}(1-|x|^{2})^{n-1} |\psi (x)|\,d\tau (x)<\infty \). Here \(P_{h}\) and \(G_{h}\) denote Poisson and Green integrals with respect to \(\Delta _{h}\), respectively. Furthermore, we prove that functions of the form \(u=P_{h}[\phi ]-G_{h}[\psi ]\) are Lipschitz continuous.
  相似文献   

18.
We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures \(\mathcal {C}\) of the same type, there exist \(B\ne A\) in \(\mathcal {C}\) such that B elementarily embeds into A in some set-forcing extension. We show that, for \(n\ge 1\), the Generic Vopěnka’s Principle fragment for \(\Pi _n\)-definable classes is equiconsistent with a proper class of n-remarkable cardinals. The n-remarkable cardinals hierarchy for \(n\in \omega \), which we introduce here, is a natural generic analogue for the \(C^{(n)}\)-extendible cardinals that Bagaria used to calibrate the strength of the first-order Vopěnka’s Principle in Bagaria (Arch Math Logic 51(3–4):213–240, 2012). Expanding on the theme of studying set theoretic properties which assert the existence of elementary embeddings in some set-forcing extension, we introduce and study the weak Proper Forcing Axiom, \(\mathrm{wPFA}\). The axiom \(\mathrm{wPFA}\) states that for every transitive model \(\mathcal M\) in the language of set theory with some \(\omega _1\)-many additional relations, if it is forced by a proper forcing \(\mathbb P\) that \(\mathcal M\) satisfies some \(\Sigma _1\)-property, then V has a transitive model \(\bar{\mathcal M}\), satisfying the same \(\Sigma _1\)-property, and in some set-forcing extension there is an elementary embedding from \(\bar{\mathcal M}\) into \(\mathcal M\). This is a weakening of a formulation of \(\mathrm{PFA}\) due to Claverie and Schindler (J Symb Logic 77(2):475–498, 2012), which asserts that the embedding from \(\bar{\mathcal M}\) to \(\mathcal M\) exists in V. We show that \(\mathrm{wPFA}\) is equiconsistent with a remarkable cardinal. Furthermore, the axiom \(\mathrm{wPFA}\) implies \(\mathrm{PFA}_{\aleph _2}\), the Proper Forcing Axiom for antichains of size at most \(\omega _2\), but it is consistent with \(\square _\kappa \) for all \(\kappa \ge \omega _2\), and therefore does not imply \(\mathrm{PFA}_{\aleph _3}\).  相似文献   

19.
Let \(v = (v_1, \ldots , v_n)\) be a vector in \(\mathbb {R}^n {\setminus } \{ 0 \}\). Consider the Laplacian on \(\mathbb {R}^n\) with drift \(\Delta _{v} = \sum _{i = 1}^n \Big ( \frac{\partial ^2}{\partial x_i^2} + 2 v_i \frac{\partial }{\partial x_i} \Big )\) and the measure \(d\mu (x) = e^{2 \langle v, x \rangle } dx\), with respect to which \(\Delta _{v}\) is self-adjoint. Let d and \(\nabla \) denote the Euclidean distance and the gradient operator on \(\mathbb {R}^n\). Consider the space \((\mathbb {R}^n, d, d\mu )\), which has the property of exponential volume growth. We obtain weak type (1, 1) for the Riesz transform \(\nabla (- \Delta _{v} )^{-\frac{1}{2}}\) and for the heat maximal operator, with respect to \(d\mu \). Further, we prove that the uncentered Hardy–Littlewood maximal operator is bounded on \(L^p\) for \(1 < p \le +\infty \) but not of weak type (1, 1) if \(n \ge 2\).  相似文献   

20.
In this paper, we study the steady-state Navier–Stokes equations in \(\mathbb {R}^3\). First, we establish the existence of very weak solution in \(\varvec{L}^p(\mathbb {R}^3)\) with \(3/2< p < +\infty \) under smallness conditions on the data. A uniqueness result is also given in case the data belong to \(\mathbb {L}^r(\mathbb {R}^3)\cap \mathbb {L}^{3/2}(\mathbb {R}^3)\) with \(3/2<r<3\). We also discuss the case where the data are not necessarily small. In particular, these results enhance those obtained by Bjorland et al. (Commun Partial Differ Equ 26:216–246, 2011), and are in agreement with those obtained by Kim and Kozono (J Math Anal Appl 395(2):486–495, 2012). Second, we prove a result of existence and uniqueness of weak solution in the weighted Sobolev space \(\varvec{W}_0^{1,p}(\mathbb {R}^3)\cap \varvec{W}_0^{1,\,3/2}(\mathbb {R}^3)\) in case of small external forces given by \(\mathrm{div}\mathbb {F}\) with \(\mathbb {F} \in \mathbb {L}^p(\mathbb {R}^3)\cap \mathbb {L}^{3/2}(\mathbb {R}^3)\) and \(1<p<3\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号