首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Typing and classification of Escherichia coli (E. coli) according to cell wall components, like polysaccharides, is routinely done by serotyping. Given the presence of 188 known O-antigens, this process is complex. The authors present a proof-of-concept planar microbead array for multiplexed O-serotyping. Ten clinically relevant E. coli serotypes associated with high risk for diarrhea in humans were examined (O26, O55, O78, O118, O124, O127, O128, O142, O145 and O157). Antisera were assigned to specific microbead populations, which can be differentiated by size and fluorescence color. Automatted image processing and data analysis were conducted by a microscopic interpretation platform. Homogenous antiserum coating of the microbeads was demonstrated by an intra-population CV that ranges from 3.3 to 6.3% and by an inter-population CV of 9.5%. Typical detections limits are in the range from 0.31 to 0.71 refMFI. Significantly elevated fluorescence signals revealed that E. coli of a certain serogroup bound specifically to microbeads with the matching antiserum (p < 0.001). In our perception, the method represents a viable diagnostic tool for automated multiplex serotyping of E. coli. It enables simultaneous and high-throughput screening for different O-antigens by a simple staining and binding protocol.
Graphical abstract Schematic of a planar microbead array for the typing and classification of E. coli according to cell wall components. Based on coated fluorescent microbeads, multiplex O-serotyping of E. coli is accomplished via fluorescence imaging.
  相似文献   

2.
Porphyromonas gingivalis (P. gingivalis) is a pathogen causing periodontitis. A rapid assay is described for the diagnosis of periodontal infections related to P. gingivalis. The method is making use of gingipains, a group of P. gingivalis specific proteases as a detection biomarker. Magnetic-nanobeads were labeled with gingipain-specific peptide substrates and immobilized on a gold biosensing platform via gold-thiol linkage. As a result of this, the color of the gold layer turns black. Upon cleavage of the immobilized substrates by gingipains, the magnetic-nanobeads-peptide fragments were attracted by a magnet so that the golden surface color becomes visible again. This assay is highly sensitive and specific. It is capable of detecting as little as 49 CFU·mL?1 of P. gingivalis within 30 s. Examination of periodontitis patients and healthy control saliva samples showed the potential of the assay. The simplicity and rapidity of the assay makes it an effective point-of-care device.
Graphical abstract Schematic of the assay for the detection of P. gingivalis proteases as one of the promising biomarkers associated with periodontal diseases.
  相似文献   

3.
An electrochemical non-enzymatic glucose sensor based on copper nanorods (CuNRs) was developed. The CuNRs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction spectroscopy, and X-ray photoelectron spectroscopy. The results display a layer of rough cuprous oxide that is formed on the surface of CuNRs. The CuNR- modified glassy carbon electrode exhibits an outstanding capability in terms of nonenzymatic sensing of glucose. The sensor displays high sensitivity (1490 μA?mM?1?cm?2), fast response time (less than 5 s), a low detection limit of 8 nM (S/N = 3), long term stability, and excellent anti-fouling ability. The sensor was applied to the detection of glucose in (spiked) human serum and in black ice tea, with relative standard deviations (for n = 6) of 1.7 % and 1.9 %, respectively.
Graphical abstract The surface of Cu nanorods was covered with cuprous oxide, which increased the surface area of the nanorods and provided more catalytic active sites for the electro-oxidation of glucose. Good linearity and selectivity were obtained in glucose sensing.
  相似文献   

4.
A lateral flow assay for rapid, simple and efficient determination of L. monocytogenes is presented. A monoclonal antibody (mAb) 1C1 against the peptide from P60 protein of L. monocytogenes was prepared and labeled with gold nanoparticles (AuNPs). The mAb 1C1 was paired with the mAb 10E7 against the P60 protein of all the Listeria spp. and used as a capture bioligand in a lateral flow assay. The AuNP-based strip test can detect the supernatant of eight common L. monocytogenes serotypes including 1/2a, 1/2b, and 4b with an equivalent detection limit of 3.7 × 106 CFU?mL?1 but does not detect four other Listeria spp. (L. ivanovii, L. innocua, L. welshimeri, and L. grayi). There was no cross-reactivity with six other Gram-negative and Gram-positive bacteria. The method was applied to the quantification of L. monocytogenes species in spiked milk samples within 13 h.
Graphical abstract Monoclonal antibody (mAb) 1C1 was prepared against the peptide from P60 protein of Listeria monocytogenes. The gold nanoparticle (AuNP) based strip sensor detects all the eight tested Listeria monocytogenes serotypes.
  相似文献   

5.
The authors describe a method for amperometric determination of chloramine-T that is based on the indirect detection of chloramine-T by detecting p-quinone imine (p-QI) that is generated by oxidation of p-aminophenylboronic acid by chloramine-T. p-QI can be detected with excellent selectivity and at low potential by using a glassy carbon electrode. Hence, the method displays attractive features such as high sensitivity, wide detection range and excellent selectivity. The electrode has two linear responses in the 50 nM to 100 μM concentration range and a 6 nM detection limit. Compared to other electrochemical methods, this assay has a detection limit that is better by three orders of magnitude. The relative standard deviation is 3.4% for the determination of 10 μM of the medical chloramine-T sample, and the recovery of a samples containing chloramine-T at a level of 10 μM is 115%.
Graphical abstract Highly sensitive electrochemical detection of chloramine-T is achieved based on the reaction of chloramine-T with p-aminophenylboronic acid with a detection limit of 6 nM.
  相似文献   

6.
This article describes an on-line technique for hydrodynamic injections of long sample plugs with simultaneous stacking of iodine species in capillary electrophoresis (CE) with diode array detection. Surfactant-coated multi-walled carbon nanotubes (SC-MWNTs) were used as a pseudostationary phase for the separation of iodate, tetraiodothyronine,triiodothyronine, diiodothyronine, and diiodotyrosine. The effects of MWNTs, concentration of SC-MWNTs and salt, of buffer pH value, injection times were examined. Under the optimized conditions, i.e. detection at 230 nm, a separation voltage 25 kV, a borate running buffer of pH 7.5 and a SC-MWNT concentration of 9 μg?·?mL?1, the method gave relative standard deviations of the retention times and peak areas in intra-day assays (for n?=?6) and for inter-day assays (for n?=?3) of less than 4.49 and 5.80 %, respectively. The CE method was then applied to the analysis of the above iodine species in (spiked) kelp (kunbu) and porphyra, and recoveries ranged from 81.6 to 98.4 % with RSDs (n?=?3) for extraction repeatability of <3.39 % in all cases.
Graphical Abstract Surfactant coated multi-walled carbon nanotubes were used as a pseudostationary phase to improve separation in iodine speciation. A highly sensitive stacking method was developed to enhance the detection sensitivity of iodine species. The CE method was then applied to the analysis of iodine species in kelp and porphyra.
  相似文献   

7.
ε-Poly-l-lysine (ε-PL) is a natural preservative for food processing industry. A thermo-responsive polymer, attached with Cu2+ or Ni2+, was prepared for metal-chelate affinity precipitation for purification of ε-PL. The low critical solution temperatures (LCSTs) of these polymers were close to the room temperature (31.0–35.0 °C). The optimal adsorption conditions were as follows: pH 4.0, 0 mol/L NaCl, ligand density 75.00 μmol/g, and 120 min. The ligand Cu2+ showed a stronger affinity interaction with ε-PL and the highest adsorption amount reached 251.93 mg/g polymer. The elution recovery of ε-PL could be 98.42% with 0.50 mol/L imidazole (pH = 8.0) as the eluent. The method could purify ε-PL from fermentation broth and the final product was proved as electrophoretic pure by SDS-PAGE. Moreover, these affinity polymers could be recycled after the purification of ε-PL and the recoveries were above 95.00%.
Graphical Abstract Scheme for affinity precipitation of ε-PL
  相似文献   

8.
The authors report an aptaelectrode based on graphene modified iron-oxide chitosan hybrid (CHIT-IO-GR) nanocomposite film deposited on fluorine tin oxide (FTO) for the detection of the Mycobacterium tuberculosis specific antigen MPT64. The biotinylated DNA aptamer sequence specific to the MPT64 was immobilized onto the CHIT-IO-GR/FTO electrode by using streptavidin-biotin interactions. XRD, FT-IR, FE-SEM and electrochemical studies were applied to monitor the steps of the fabrication. The aptaelectrode, operated best at typical voltage of 0.44 V, exhibited a limit of detection (LOD) of 0.9 fg?mL?1 within 20 min. The biosensor retained about 80% of its initial activity after 10 uses. The potential application of the aptasensor was established by spike-in studies to obtain recoveries between 83 and 95%.
Graphical abstract An electrochemical aptaelectrode based on nanocomposite consisting of chitosan (CHIT), iron-oxide nanoparticles (IO) and functionalized graphene (GR) has been fabricated to detect M. tb antigen MPT64 with an LOD of 0.9 fg?mL?1 within 20 min.
  相似文献   

9.
A glassy carbon electrode (GCE) modified with polymeric nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid was prepared. The modified GCE was applied to sensitive and fairly selective electrochemical determination of the mycotoxin zearalenone. Electrocatalytic oxidation is performed in a solution containing 20 % (V/V) acetonitrile and 80 % (V/V) of 1 M perchloric acid. Cyclic voltammetry and square wave voltammetry revealed a well-defined electrocatalytic peak current at overpotential of +0.69 V versus Ag/AgCl. Under optimized experimental conditions, there is a linear relationship between anodic peak current and zearalenone concentration in the range from 0.03 to 35 ng?mL ̄1, and the detection limit is 0.01 ng?mL ̄1. The method was successfully applied to the analysis of zearalenone in spiked food samples and gave recoveries between 95.6 and 104.0 %.
Graphical abstract The nanocomposite (PdVC-PIL) was prepared by polymerization of ionic liquid monomer (PIL) in presence of Pd nanoparticles on Vulcan XC-72R carbon (PdVC). The solution containing nanocomposite was placed on the glassy carbon electrode (GCE). The voltammetry activity of modified electrode (PdVC-PIL/GCE) was compared to a bare GCE for zearalenone determination.
  相似文献   

10.
A molecularly imprinted polymer (MIP) and a nanocomposite prepared from gold nanoparticles (AuNP) and poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) were deposited on a screen-printed carbon electrode (SPCE). The nanocomposite was prepared by one-pot simultaneous in-situ formation of AuNPs and PEDOT:PSS and was then inkjet-coated onto the SPCE. The MIP film was subsequently placed on the modified SPCE by co-electrodeposition of o-phenylenediamine and resorcinol in the presence of the antibiotic nitrofurantoin (NFT). Using differential pulse voltammetry (DPV), response at the potential of ~ 0.1 V (vs. Ag/AgCl) is linear in 1 nM to 1000 nM NFT concentration range, with a remarkably low detection limit (at S/N?=?3) of 0.1 nM. This is two orders of magnitude lower than that of the control MIP sensor without the nanocomposite interlayer, thus showing the beneficial effect of AuNP-PEDOT:PSS. The electrode is highly reproducible (relative standard deviation 3.1% for n?=?6) and selective over structurally related molecules. It can be re-used for at least ten times and was found to be stable for at least 45 days. It was successfully applied to the determination of NFT in (spiked) feed matrices and gave good recoveries.
Graphical abstract Schematic representation of a voltammetric sensor for the determination of nitrofurantoin. The sensor is based on a screen-printed carbon electrode (SPCE) modified with an inkjet-printed gold nanoparticles-poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) nanocomposite and a molecularly imprinted polymer.
  相似文献   

11.
An ultrasensitive fluorometric assay is described for the determination of the activity of the enzyme α-glucosidase in waters and living cells. Carbon dots doped with nitrogen and boron (N,B-CDs) were prepared that have excitation/emission peaks at 400/510 nm and a fluorescence quantum yield of 47%. 4-Nitrophenylglucoside is added and then hydrolyzed by α-glucosidase to form yellow 4-nitrophenol which screens off fluorescence due to an inner filter effect. The method was applied to the determination of α-glucosidase activity and has a 3 mU mL?1 detection limit. It was subsequently applied to the determination of the α-glucosidase inhibitor acarbose which can be determined in a concentration as low as 10 nM (at three times the standard deviation versus slope). The method was also applied to the determination of α-glucosidase activity and acarbose in living HeLa cells and MCF-7 cells. The method is simple, sensitive, and excellently selective.
Graphical abstract N,B-CDs as ultrasensitive fluorescence probe for α-glucosidase activity and its inhibitor in waters and living cells based on IFE.
  相似文献   

12.
We have prepared an environmental friendly sorbent by modifying multi-walled carbon nanotubes with tannic acid. The adsorption of La (III), Tb (III) and Lu (III) as a function of contact time, initial solution pH, and quantity of adsorbent was studied using a batch technique. Both Langmuir and Freundlich isotherms can be used to describe the process. The major adsorption mechanisms were attributed to ion exchange and surface complexation. The kinetics of the adsorption follows a pseudo-second-order model. The thermodynamic functions ΔH, ΔG, and ΔS indicate that the sorption is endothermically driven. The adsorbed ions can be readily desorbed from the surface with 1 M hydrochloric acid.
Figure An environmental friendly sorbent, multi-walled carbon nanotubes modified with tannic acid has been prepared and used for the adsorption of REEs. Adsorption capacity, Langmuir and Freundlich adsorption isotherms, kinetics, and thermodynamic functions have been investigated. The major adsorption mechanism can be attributed to ion exchange and surface complexation.
  相似文献   

13.
The authors describe three fluorescein-conjugated peptides generated by cell-phage display for use as a diagnostic probes for fluorescent detection and imaging of Salmonella enteritidis and Salmonella typhimurium. The authors also designed a polyvalent-directed peptide polymer synthesized with poly-D-lysine and bifunctional succinimidyl 3-(2-pyridyldithio)propionate with an affinity and sensitivity that is higher by more than an order of magnitude compared to single peptides due to multiple binding site interactions. In order to establish a diagnostic system for food poisoning, imaging analysis was performed using fluorescence microscopy. The limit of detection of the diagnostic system based on polyvalent directed peptide interaction is 102 colony-forming units per mL for Salmonella.
Graphical abstract Schematic of a fluorescent method for detection and imaging of Salmonella enteritidis and Salmonella typhimurium by using a fluorescein labeled polyvalent-directed peptide polymer (PDPP) with a high affinity and sensitivity as a diagnostic probe. The system uses a microplate reader and was applied to the detection of food poisoning.
  相似文献   

14.
The authors describe a voltammetric immunoassay for the carcinoembryonic antigen (CEA). It is based on the use of a self-assembled magnetic nanocomposite as multifunctional signal amplification platform. The core of the nanocomposite consists of Fe3O4 microspheres, and the shell of zirconium hexacyanoferrate loaded with gold nanoparticles (AuNPs@ZrHCF@Fe3O4). The material was synthesized by an electrostatic self-assembly process which is caused by the strong interaction between cyano groups and AuNPs. The surface of the Fe3O4 microspheres was functionalized with amino groups to facilitate the immobilization of ZrHCF which acts as an electron mediator. The nanocomposite was placed on a glassy carbon electrode which then displays noteworthy electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2). The AuNPs serve as a support for the immobilization of antibodies by the interaction between AuNPs and amino groups on antibodies to construct a covalent Au-N bond. This facilitates electron transfer on the electrode surface using H2O2 as the electrochemical probe. Square wave voltammetry (measured typically at +0.2 V vs. SCE) was carried out to record the electrochemical behavior. Under the optimal conditions, a response is linear in the 0.5 pg·mL?1 to 50 ng·mL?1 CEA concentration range, and the detection limit is as low as 0.15 pg·mL?1 (S/N =?3). The method is selective, highly stable and acceptably reproducible.
Graphical abstract A self-assembly magnetic nanocomposite for voltammetric immunoassay of CEA. GCE glassy carbon electrode; Au NPs gold nanoparticles; ZrHCF zirconium hexacyanoferrate; CEA carcinoembryonic antigen; Anti-CEA CEA antibody; BSA bovine serum albumin; SWV square wave voltammetry. A high sensitive voltammetric immunoassay method has been used for detecting CEA, It is based on a self-assembled magnetic nanocomposite (Au NPs@ZrHCF@Fe3O4) as multifunctional signal amplification platform.
  相似文献   

15.
An affinity-based protocol is described for the detection of Staphylococcus aureus (S. aureus). It is utilizing teicoplanin-functionalized magnetic beads as carriers. Teicoplanin, which binds to the walls of cells of S. aureus via five hydrogen bonds, acts as the recognition agent. Captured S. aureus is magnetically separated from the sample matrix and then specifically lysed by lysostaphin which cleaves the cross-linking pentaglycine bridges of peptidoglycan in the cell wall. Lastly, S. aureus is quantified via the inhibitory effect of released intracellular catalase on a chemiluminescent (CL) system composed of peroxidase, luminol, H2O2 and p-iodophenol because catalase decomposes H2O2. S. aureus can be detected with CL response in the 140 to 1.4?×?107 CFU·mL?1 concentration range and a detection limit as low as 47 CFU·mL?1 at a signal-to-noise ratio of 3. The method was evaluated by analyzing spiked samples including milk, human urine and saline injection solutions. The reliability was demonstrated by a recovery test and by comparison with a conventional plate counting method.
Graphical abstract An antibiotic-affinity protocol is developed to detect Staphylococcus aureus (S. aureus) by utilizing teicoplanin-functionalized magnetic beads (Teic-MBs) as carriers. S. aureus can be quantified by measuring the inhibition of luminol chemiluminescence (CL) signal by intracellular catalase.
  相似文献   

16.
The fucosylated Golgi protein 73 (fuc-GP73) has been used as a criterion to distinguish hepatocellular carcinoma (HCC) from other chronic liver diseases. We describe an amperometric aptasensor for ultrasensitive detection of fuc-GP73 that uses a thiolated aptamer against GP73 as the capture probe, and gold nanoparticles (AuNPs) modified with Avidinlens culinaris agglutinin (A-LCA) as the detection probe. The AuNPs on the surface of a gold electrode provide a large surface for immobilization of A-LCA, so that they can be heavily loaded with biotinylated horse radish peroxidase (B-HRP) via avidin-biotin interactions. This results in enhanced analytical sensitivity. Under optimized conditions and a typical working potential as low as 48 mV (vs. SCE), the dynamic response of the electrode covers the 10 pg·mL?1 to 25 ng·mL?1 fuc-GP73 concentation range, with a 7 pg·mL?1 detection limit (for an S/N ratio of 3). The assay is precise, selective and reproducible. It was applied to the determination of fuc-GP73 in serum.
Graphical abstract Schematic of an electrochemical aptasensor for the determination of fucosylated golgi protein 73 (fuc-gp73) based on the avidin-Lens culinaris agglutinin (A-LCA) and biotinylated horse radish peroxidase (B-HRP). It was applied to serum analysis with good sensitivity, selectivity and reproducibility.
  相似文献   

17.
A graphene based bucky gel-coated stainless steel fiber was prepared and applied to headspace solid phase microextraction of volatile organic compounds. Graphene was mixed with an ionic liquid to produce a bucky gel that displays the attractive features of both compounds. It can be directly deposited on an etched stainless steel wire to give the fiber for use in extraction of benzene, toluene, ethylbenzene and xylene (BTEX) isomers. The presence of graphene favors the π-interaction between the sorbent and aromatic analytes. The sorbent is thermally stable up to 300 °C and can be used more than 50 times. It was characterized by field emission scanning electron microscopy, FT-IR spectroscopy and thermogravimetric analysis. Under optimized conditions, linear responses were found in the range of 0.11–5000 μg L?1 for toluene, 0.15–5000 for benzene and o-xylene, 0.17–5000 for m- and?p-xylene and 0.20–5000 for ethylbenzene. Limits of detection are between 0.03 and 0.06 μg L?1 (at an S/N ratio of 3). The run-to-run RSDs are <5.8% (for n =?6), and fiber-to-fiber RSDs are 4.1–9.2% (n =?4). The method was successfully applied to the extraction of BTEX isomers in spiked urine samples and gave recoveries between 88 and 105%.
Graphical abstract Graphene based bucky gel (G-BG) was prepared by mixing an ionic liquid with graphene. It was physically deposited on stainless steel wire. The fiber was applied to the headspace solid phase microextraction (HS-SPME) of benzene, toluene, ethylbenzene and xylenes.
  相似文献   

18.
The 16 kDa heat shock protein (16 kDa HSP) against Mycobacterium tuberculosis (MT), expressed during the growth phase of MT, is a potential target in diagnostic tests for tuberculosis (TB). We describe here a method for impedimetric determination of the antigen by using a nanogapped dielectric surface consisting of a silver support coated with a thin finger-shaped coating made from zinc oxide and gold and patterned through a lift-off process. The electrode was characterized by scanning electron microscopy, field emission scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray spectroscopy. Surface chemical functionalization and immobilization of antibody against the 16 kDa HSP was evidenced by FTIR. In order to improve the detection limit, the antigen was conjugated to 10 nm gold nanoparticles. The resulting biosensor is capable of detecting the 16 kDa HSP in concentrations as low as 100 fM. The method covers a wide analytical range that extends from 100 fM to 1 nM.
Graphical abstract Schematic presentation of the nanogapped impedimetric immunosensor for the diagnosis of tuberculosis
  相似文献   

19.
Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.
Graphical Abstract ?
  相似文献   

20.
We have previously shown that liquid extraction surface analysis (LESA) mass spectrometry (MS) is a technique suitable for the top-down analysis of proteins directly from intact colonies of the Gram-negative bacterium Escherichia coli K-12. Here we extend the application of LESA MS to Gram-negative Pseudomonas aeruginosa PS1054 and Gram-positive Staphylococcus aureus MSSA476, as well as two strains of E. coli (K-12 and BL21 mCherry) and an unknown species of Staphylococcus. Moreover, we demonstrate the discrimination between three species of Gram-positive Streptococcus (Streptococcus pneumoniae D39, and the viridans group Streptococcus oralis ATCC 35037 and Streptococcus gordonii ATCC35105), a recognized challenge for matrix-assisted laser desorption ionization time-of-flight MS. A range of the proteins detected were selected for top-down LESA MS/MS. Thirty-nine proteins were identified by top-down LESA MS/MS, including 16 proteins that have not previously been observed by any other technique. The potential of LESA MS for classification and characterization of novel species is illustrated by the de novo sequencing of a new protein from the unknown species of Staphylococcus.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号