首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The well-known Chowla and Zassenhaus conjecture, proven by Cohen in 1990, states that for any \(d\ge 2\) and any prime \(p>(d^2-3d+4)^2\) there is no complete mapping polynomial in \(\mathbb {F}_p[x]\) of degree d. For arbitrary finite fields \(\mathbb {F}_q\), we give a similar result in terms of the Carlitz rank of a permutation polynomial rather than its degree. We prove that if \(n<\lfloor q/2\rfloor \), then there is no complete mapping in \(\mathbb {F}_q[x]\) of Carlitz rank n of small linearity. We also determine how far permutation polynomials f of Carlitz rank \(n<\lfloor q/2\rfloor \) are from being complete, by studying value sets of \(f+x.\) We provide examples of complete mappings if \(n=\lfloor q/2\rfloor \), which shows that the above bound cannot be improved in general.  相似文献   

2.
For \(t \in [0,1]\) let \(\underline{H}_{2\lfloor nt \rfloor } = (m_{i+j})_{i,j=0}^{\lfloor nt \rfloor }\) denote the Hankel matrix of order \(2\lfloor nt \rfloor \) of a random vector \((m_1,\ldots ,m_{2n})\) on the moment space \(\mathcal {M}_{2n}(I)\) of all moments (up to the order 2n) of probability measures on the interval \(I \subset \mathbb {R}\). In this paper we study the asymptotic properties of the stochastic process \(\{ \log \det \underline{H}_{2\lfloor nt \rfloor } \}_{t\in [0,1]}\) as \(n \rightarrow \infty \). In particular weak convergence and corresponding large deviation principles are derived after appropriate standardization.  相似文献   

3.
In this paper, s-\({\text {PD}}\)-sets of minimum size \(s+1\) for partial permutation decoding for the binary linear Hadamard code \(H_m\) of length \(2^m\), for all \(m\ge 4\) and \(2 \le s \le \lfloor {\frac{2^m}{1+m}}\rfloor -1\), are constructed. Moreover, recursive constructions to obtain s-\({\text {PD}}\)-sets of size \(l\ge s+1\) for \(H_{m+1}\) of length \(2^{m+1}\), from an s-\({\text {PD}}\)-set of the same size for \(H_m\), are also described. These results are generalized to find s-\({\text {PD}}\)-sets for the \({\mathbb {Z}}_4\)-linear Hadamard codes \(H_{\gamma , \delta }\) of length \(2^m\), \(m=\gamma +2\delta -1\), which are binary Hadamard codes (not necessarily linear) obtained as the Gray map image of quaternary linear codes of type \(2^\gamma 4^\delta \). Specifically, s-PD-sets of minimum size \(s+1\) for \(H_{\gamma , \delta }\), for all \(\delta \ge 3\) and \(2\le s \le \lfloor {\frac{2^{2\delta -2}}{\delta }}\rfloor -1\), are constructed and recursive constructions are described.  相似文献   

4.
The Walsh transform \(\widehat{Q}\) of a quadratic function \(Q:{\mathbb F}_{p^n}\rightarrow {\mathbb F}_p\) satisfies \(|\widehat{Q}(b)| \in \{0,p^{\frac{n+s}{2}}\}\) for all \(b\in {\mathbb F}_{p^n}\), where \(0\le s\le n-1\) is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class \(\mathcal {C}_1\) is defined for arbitrary n as \(\mathcal {C}_1 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{\lfloor (n-1)/2\rfloor }a_ix^{2^i+1})\;:\; a_i \in {\mathbb F}_2\}\), and the larger class \(\mathcal {C}_2\) is defined for even n as \(\mathcal {C}_2 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{(n/2)-1}a_ix^{2^i+1}) + \mathrm{Tr_{n/2}}(a_{n/2}x^{2^{n/2}+1}) \;:\; a_i \in {\mathbb F}_2\}\). For an odd prime p, the subclass \(\mathcal {D}\) of all p-ary quadratic functions is defined as \(\mathcal {D} = \{Q(x) = \mathrm{Tr_n}(\sum _{i=0}^{\lfloor n/2\rfloor }a_ix^{p^i+1})\;:\; a_i \in {\mathbb F}_p\}\). We determine the generating function for the distribution of the parameter s for \(\mathcal {C}_1, \mathcal {C}_2\) and \(\mathcal {D}\). As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case \(p > 2\), the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to \(\mathcal {C}_1\) and \(\mathcal {C}_2\) in terms of a generating function.  相似文献   

5.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

6.
Given a sequence of random functionals \(\bigl \{X_k(u)\bigr \}_{k \in \mathbb {Z}}\), \(u \in \mathbf{I}^d\), \(d \ge 1\), the normalized partial sums \(\check{S}_{nt}(u) = n^{-1/2}\bigl (X_1(u) + \cdots + X_{\lfloor n t \rfloor }(u)\bigr )\), \(t \in [0,1]\) and its polygonal version \({S}_{nt}(u)\) are considered under a weak dependence assumption and \(p > 2\) moments. Weak invariance principles in the space of continuous functions and càdlàg functions are established. A particular emphasis is put on the process \(\check{S}_{nt}(\widehat{\theta })\), where \(\widehat{\theta } \xrightarrow {\mathbb {P}} \theta \), and weaker moment conditions (\(p = 2\) if \(d = 1\)) are assumed.  相似文献   

7.
Cellular automata are discrete dynamical systems that consist of patterns of symbols on a grid, which change according to a locally determined transition rule. In this paper, we will consider cellular automata that arise from polynomial transition rules, where the symbols are integers modulo some prime p. We consider the asymptotic behavior of the line complexity sequence \(a_T(k)\), which counts, for each k, the number of coefficient strings of length k that occur in the automaton. We begin with the modulo 2 case. For a polynomial \(T(x)=c_0+c_1x+\dots +c_nx^n\) with \(c_0,c_n\ne ~0\), we construct odd and even parts of the polynomial from the strings \(0c_1c_3c_5\cdots c_{1+2\lfloor (n-1)/2\rfloor }\) and \(c_0c_2c_4\cdots c_{2\lfloor n/2\rfloor }\), respectively. We prove that \(a_T(k)\) satisfies recursions of a specific form if the odd and even parts of T are relatively prime. We also define the order of such a recursion and show that the property of “having a recursion of some order” is preserved when the transition rule is raised to a positive integer power. Extending to a more general setting, we consider an abstract generating function \(\phi (z)=\sum _{k=1}^\infty \alpha (k)z^k\) which satisfies a functional equation relating \(\phi (z)\) and \(\phi (z^p)\). We show that there is a continuous, piecewise quadratic function f on [1 / p, 1] for which \(\lim _{k\rightarrow \infty }(\alpha (k)/k^2-~f(p^{-\langle \log _p k\rangle })) = 0\) (here \(\langle y\rangle =y-\lfloor y\rfloor \)). We use this result to show that for certain positive integer sequences \(s_k(x)\rightarrow \infty \) with a parameter \(x\in [1/p,1]\), the ratio \(\alpha (s_k(x))/s_k(x)^2\) tends to f(x), and that the limit superior and inferior of \(\alpha (k)/k^2\) are given by the extremal values of f.  相似文献   

8.
This article concerns the iteration of quasiregular mappings on \(\mathbb {R}^d\) and entire functions on \(\mathbb {C}\). It is shown that there are always points at which the iterates of a quasiregular map tend to infinity at a controlled rate. Moreover, an asymptotic rate of escape result is proved that is new even for transcendental entire functions. Let \(f:\mathbb {R}^d\rightarrow \mathbb {R}^d\) be quasiregular of transcendental type. Using novel methods of proof, we generalise results of Rippon and Stallard in complex dynamics to show that the Julia set of f contains points at which the iterates \(f^n\) tend to infinity arbitrarily slowly. We also prove that, for any large R, there is a point x with modulus approximately R such that the growth of \(|f^n(x)|\) is asymptotic to the iterated maximum modulus \(M^{n}(R,f)\).  相似文献   

9.
We consider the Anderson polymer partition function
$$\begin{aligned} u(t):=\mathbb {E}^X\left[ e^{\int _0^t \mathrm {d}B^{X(s)}_s}\right] \,, \end{aligned}$$
where \(\{B^{x}_t\,;\, t\ge 0\}_{x\in \mathbb {Z}^d}\) is a family of independent fractional Brownian motions all with Hurst parameter \(H\in (0,1)\), and \(\{X(t)\}_{t\in \mathbb {R}^{\ge 0}}\) is a continuous-time simple symmetric random walk on \(\mathbb {Z}^d\) with jump rate \(\kappa \) and started from the origin. \(\mathbb {E}^X\) is the expectation with respect to this random walk. We prove that when \(H\le 1/2\), the function u(t) almost surely grows asymptotically like \(e^{\lambda t}\), where \(\lambda >0\) is a deterministic number. More precisely, we show that as t approaches \(+\infty \), the expression \(\{\frac{1}{t}\log u(t)\}_{t\in \mathbb {R}^{>0}}\) converges both almost surely and in the \(\hbox {L}^1\) sense to some positive deterministic number \(\lambda \). For \(H>1/2\), we first show that \(\lim _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) exists both almost surely and in the \(\hbox {L}^1\) sense and equals a strictly positive deterministic number (possibly \(+\infty \)); hence, almost surely u(t) grows asymptotically at least like \(e^{\alpha t}\) for some deterministic constant \(\alpha >0\). On the other hand, we also show that almost surely and in the \(\hbox {L}^1\) sense, \(\limsup _{t\rightarrow \infty } \frac{1}{t\sqrt{\log t}}\log u(t)\) is a deterministic finite real number (possibly zero), hence proving that almost surely u(t) grows asymptotically at most like \(e^{\beta t\sqrt{\log t}}\) for some deterministic positive constant \(\beta \). Finally, for \(H>1/2\) when \(\mathbb {Z}^d\) is replaced by a circle endowed with a Hölder continuous covariance function, we show that \(\limsup _{t\rightarrow \infty } \frac{1}{t}\log u(t)\) is a deterministic finite positive real number, hence proving that almost surely u(t) grows asymptotically at most like \(e^{c t}\) for some deterministic positive constant c.
  相似文献   

10.
We prove Nikol’skii type inequalities that, for polynomials on the n-dimensional torus \(\mathbb {T}^n\), relate the \(L^p\)-norm with the \(L^q\)-norm (with respect to the normalized Lebesgue measure and \(0 <p <q < \infty \)). Among other things, we show that \(C=\sqrt{q/p}\) is the best constant such that \(\Vert P\Vert _{L^q}\le C^{\text {deg}(P)} \Vert P\Vert _{L^p}\) for all homogeneous polynomials P on \(\mathbb {T}^n\). We also prove an exact inequality between the \(L^p\)-norm of a polynomial P on \(\mathbb {T}^n\) and its Mahler measure M(P), which is the geometric mean of |P| with respect to the normalized Lebesgue measure on \(\mathbb {T}^n\). Using extrapolation, we transfer this estimate into a Khintchine–Kahane type inequality, which, for polynomials on \(\mathbb {T}^n\), relates a certain exponential Orlicz norm and Mahler’s measure. Applications are given, including some interpolation estimates.  相似文献   

11.
Nonparametric estimation of a quantile of a random variable m(X) is considered, where \(m: \mathbb {R}^d\rightarrow \mathbb {R}\) is a function which is costly to compute and X is a \(\mathbb {R}^d\)-valued random variable with a given density. An importance sampling quantile estimate of m(X), which is based on a suitable estimate \(m_n\) of m, is defined, and it is shown that this estimate achieves a rate of convergence of order \(\log ^{1.5}(n)/n\). The finite sample size behavior of the estimate is illustrated by simulated data.  相似文献   

12.
Let \(\{X_i, i\ge 1\}\) be i.i.d. \(\mathbb {R}^d\)-valued random vectors attracted to operator semi-stable laws and write \(S_n=\sum _{i=1}^{n}X_i\). This paper investigates precise large deviations for both the partial sums \(S_n\) and the random sums \(S_{N(t)}\), where N(t) is a counting process independent of the sequence \(\{X_i, i\ge 1\}\). In particular, we show for all unit vectors \(\theta \) the asymptotics
$$\begin{aligned} {\mathbb P}(|\langle S_n,\theta \rangle |>x)\sim n{\mathbb P}(|\langle X,\theta \rangle |>x) \end{aligned}$$
which holds uniformly for x-region \([\gamma _n, \infty )\), where \(\langle \cdot , \cdot \rangle \) is the standard inner product on \(\mathbb {R}^d\) and \(\{\gamma _n\}\) is some monotone sequence of positive numbers. As applications, the precise large deviations for random sums of real-valued random variables with regularly varying tails and \(\mathbb {R}^d\)-valued random vectors with weakly negatively associated occurrences are proposed. The obtained results improve some related classical ones.
  相似文献   

13.
This paper first shows that the Riemann localisation property holds for the Fourier-Laplace series partial sum for sufficiently smooth functions on the two-dimensional sphere, but does not hold for spheres of higher dimension. By Riemann localisation on the sphere \(\mathbb {S}^{d}\subset \mathbb {R}^{d+1}\), \(d\ge 2\), we mean that for a suitable subset X of \(\mathbb {L}_{p}(\mathbb {S}^{d})\), \(1\le p\le \infty \), the \(\mathbb {L}_{p}\)-norm of the Fourier local convolution of \(f\in X\) converges to zero as the degree goes to infinity. The Fourier local convolution of f at \(\mathbf {x}\in \mathbb {S}^{d}\) is the Fourier convolution with a modified version of f obtained by replacing values of f by zero on a neighbourhood of \(\mathbf {x}\). The failure of Riemann localisation for \(d>2\) can be overcome by considering a filtered version: we prove that for a sphere of any dimension and sufficiently smooth filter the corresponding local convolution always has the Riemann localisation property. Key tools are asymptotic estimates of the Fourier and filtered kernels.  相似文献   

14.
This paper is divided into two parts: In the main deterministic part, we prove that for an open domain \(D \subset \mathbb {R}^d\) with \(d \ge 2\), for every (measurable) uniformly elliptic tensor field a and for almost every point \(y \in D\), there exists a unique Green’s function centred in y associated to the vectorial operator \(-\nabla \cdot a\nabla \) in D. This result implies the existence of the fundamental solution for elliptic systems when \(d>2\), i.e. the Green function for \(-\nabla \cdot a\nabla \) in \(\mathbb {R}^d\). In the second part, we introduce a shift-invariant ensemble \(\langle \cdot \rangle \) over the set of uniformly elliptic tensor fields, and infer for the fundamental solution G some pointwise bounds for \(\langle |G(\cdot ; x,y)|\rangle \), \(\langle |\nabla _x G(\cdot ; x,y)|\rangle \) and \(\langle |\nabla _x\nabla _y G(\cdot ; x,y)|\rangle \). These estimates scale optimally in space and provide a generalisation to systems of the bounds obtained by Delmotte and Deuschel for the scalar case.  相似文献   

15.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

16.
We estimate exponential sums over a non-homogenous Beatty sequence with restriction on strongly q-additive functions. We then apply our result in a few special cases to obtain an asymptotic formula for the number of primes \(p=\lfloor \alpha n +\beta \rfloor \) and \(f(p)\equiv a (\mathrm{mod\,}b)\), with \(n\ge N \), where \(\alpha \), \(\beta \) are real numbers and f is a strongly q-additive function (for example, the sum of digits function in base q is a strongly q-additive function). We also prove that for any fixed integer \(k\ge 3 \), all sufficiently large \(N\equiv k (\mathrm{mod\,}2) \) could be represented as a sum of k prime numbers from a Beatty sequence with restriction on strongly q-additive functions.  相似文献   

17.
We establish the linear independence of time-frequency translates for functions \(f\) on \(\mathbb {R}^d\) having one-sided decay \(\lim _{x \in H,\ |x|\rightarrow \infty } |f(x)| e^{c|x| \log |x|} = 0\) for all \(c>0\), which do not vanish on an affine half-space \(H \subset \mathbb {R}^d\).  相似文献   

18.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

19.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

20.
We describe a ruleset for a 2-pile subtraction game with P-positions \(\{(\lfloor \alpha n \rfloor ,\lfloor \beta n \rfloor ) : n \in \mathbb Z_{\ge 0} \}\) for any irrational \(1< \alpha < 2\), and \(\beta \) such that \(1/\alpha +1/\beta = 1\). We determine the \(\alpha \)’s for which the game can be represented as a finite modification of t-Wythoff (Holladay, Math Mag 41:7–13, 1968; Fraenkel, Am Math Mon 89(6):353–361, 1982) and describe this modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号