首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In 1987 Harris proved (Proc Am Math Soc 101(4):637–643, 1987)—among others—that for each \(1\le p<2\) there exists a two-dimensional function \(f\in L^p\) such that its triangular Walsh–Fourier series diverges almost everywhere. In this paper we investigate the Fejér (or (C, 1)) means of the triangle two variable Walsh–Fourier series of \(L^1\) functions. Namely, we prove the a.e. convergence \(\sigma _n^{\bigtriangleup }f = \frac{1}{n}\sum _{k=0}^{n-1}S_{k, n-k}f\rightarrow f\) (\(n\rightarrow \infty \)) for each integrable two-variable function f.  相似文献   

2.
Let \(n\ge 3, \Omega \) be a bounded, simply connected and semiconvex domain in \({\mathbb {R}}^n\) and \(L_{\Omega }:=-\Delta +V\) a Schrödinger operator on \(L^2 (\Omega )\) with the Dirichlet boundary condition, where \(\Delta \) denotes the Laplace operator and the potential \(0\le V\) belongs to the reverse Hölder class \(RH_{q_0}({\mathbb {R}}^n)\) for some \(q_0\in (\max \{n/2,2\},\infty ]\). Assume that the growth function \(\varphi :\,{\mathbb {R}}^n\times [0,\infty ) \rightarrow [0,\infty )\) satisfies that \(\varphi (x,\cdot )\) is an Orlicz function and \(\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }({\mathbb {R}}^n)\) (the class of uniformly Muckenhoupt weights). Let \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) be the Musielak–Orlicz–Hardy space whose elements are restrictions of elements of the Musielak–Orlicz–Hardy space, associated with \(L_{{\mathbb {R}}^n}:=-\Delta +V\) on \({\mathbb {R}}^n\), to \(\Omega \). In this article, the authors show that the operators \(VL^{-1}_\Omega \) and \(\nabla ^2L^{-1}_\Omega \) are bounded from \(L^1(\Omega )\) to weak-\(L^1(\Omega )\), from \(L^p(\Omega )\) to itself, with \(p\in (1,2]\), and also from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to the Musielak–Orlicz space \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself. As applications, the boundedness of \(\nabla ^2{\mathbb {G}}_D\) on \(L^p(\Omega )\), with \(p\in (1,2]\), and from \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) to \(L^\varphi (\Omega )\) or to \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) itself is obtained, where \({\mathbb {G}}_D\) denotes the Dirichlet Green operator associated with \(L_\Omega \). All these results are new even for the Hardy space \(H^1_{L_{{\mathbb {R}}^n},\,r}(\Omega )\), which is just \(H_{\varphi ,\,L_{{\mathbb {R}}^n},\,r}(\Omega )\) with \(\varphi (x,t):=t\) for all \(x\in {\mathbb {R}}^n\) and \(t\in [0,\infty )\).  相似文献   

3.
In this paper, the large time decay of the magneto-micropolar fluid equations on \(\mathbb {R}^n\) (\( n=2,3\)) is studied. We show, for Leray global solutions, that \( \Vert ({\varvec{u}},{\varvec{w}},{\varvec{b}})(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} \rightarrow 0 \) as \(t \rightarrow \infty \) with arbitrary initial data in \( L^2(\mathbb {R}^n)\). When the vortex viscosity is present, we obtain a (faster) decay for the micro-rotational field: \( \Vert {\varvec{w}}(\cdot ,t) \Vert _{{L^2(\mathbb {R}^n)}} = o(t^{-1/2})\). Some related results are also included.  相似文献   

4.
We extended the known result that symbols from modulation spaces \(M^{\infty ,1}(\mathbb {R}^{2n})\), also known as the Sjöstrand’s class, produce bounded operators in \(L^2(\mathbb {R}^n)\), to general \(L^p\) boundedness at the cost of loss of derivatives. Indeed, we showed that pseudo-differential operators acting from \(L^p\)-Sobolev spaces \(L^p_s(\mathbb {R}^n)\) to \(L^p(\mathbb {R}^n)\) spaces with symbols from the modulation space \(M^{\infty ,1}(\mathbb {R}^{2n})\) are bounded, whenever \(s\ge n|1/p-1/2|.\) This estimate is sharp for all \(1< p<\infty \).  相似文献   

5.
Suppose \(\mu \) is an \(\alpha \)-dimensional fractal measure for some \(0<\alpha <n\). Inspired by the results proved by Strichartz (J Funct Anal 89:154–187, 1990), we discuss the \(L^p\)-asymptotics of the Fourier transform of \(fd\mu \) by estimating bounds of
$$\begin{aligned} \underset{L\rightarrow \infty }{\liminf }\ \frac{1}{L^k} \int _{|\xi |\le L}\ |\widehat{fd\mu }(\xi )|^pd\xi , \end{aligned}$$
for \(f\in L^p(d\mu )\) and \(2<p<2n/\alpha \). In a different direction, we prove a Hardy type inequality, that is,
$$\begin{aligned} \int \frac{|f(x)|^p}{(\mu (E_x))^{2-p}}d\mu (x)\le C\ \underset{L\rightarrow \infty }{\liminf }\frac{1}{L^{n-\alpha }} \int _{B_L(0)}|\widehat{fd\mu }(\xi )|^pd\xi \end{aligned}$$
where \(1\le p\le 2\) and \(E_x=E\cap (-\infty ,x_1]\times (-\infty ,x_2]\ldots (-\infty ,x_n]\) for \(x=(x_1,\ldots x_n)\in {\mathbb R}^n\) generalizing the one dimensional results by Hudson and Leckband (J Funct Anal 108:133–160, 1992).
  相似文献   

6.
Let G be a locally compact abelian group, \(\omega :G\rightarrow (0,\infty )\) be a weight, and (\(\Phi ,\Psi \)) be a complementary pair of strictly increasing continuous Young functions. We show that for the weighted Orlicz algebra \(L^\Phi _\omega (G)\), the weak amenability is obtained under conditions similar to the ones considered in Zhang (Proc Amer Math Soc 142:1649–1661, 2014) for weighted group algebras. Our methods can be applied to various families of weighted Orlicz algebras, including weighted \(L^p\)-spaces.  相似文献   

7.
For \(p\in [1,\infty ]\), we establish criteria for the one-sided invertibility of binomial discrete difference operators \({{\mathcal {A}}}=aI-bV\) on the space \(l^p=l^p(\mathbb {Z})\), where \(a,b\in l^\infty \), I is the identity operator and the isometric shift operator V is given on functions \(f\in l^p\) by \((Vf)(n)=f(n+1)\) for all \(n\in \mathbb {Z}\). Applying these criteria, we obtain criteria for the one-sided invertibility of binomial functional operators \(A=aI-bU_\alpha \) on the Lebesgue space \(L^p(\mathbb {R}_+)\) for every \(p\in [1,\infty ]\), where \(a,b\in L^\infty (\mathbb {R}_+)\), \(\alpha \) is an orientation-preserving bi-Lipschitz homeomorphism of \([0,+\infty ]\) onto itself with only two fixed points 0 and \(\infty \), and \(U_\alpha \) is the isometric weighted shift operator on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f= (\alpha ^\prime )^{1/p}(f\circ \alpha )\). Applications of binomial discrete operators to interpolation theory are given.  相似文献   

8.
Let \(\alpha ,\beta \) be orientation-preserving diffeomorphism (shifts) of \(\mathbb {R}_+=(0,\infty )\) onto itself with the only fixed points \(0\) and \(\infty \) and \(U_\alpha ,U_\beta \) be the isometric shift operators on \(L^p(\mathbb {R}_+)\) given by \(U_\alpha f=(\alpha ')^{1/p}(f\circ \alpha )\), \(U_\beta f=(\beta ')^{1/p}(f\circ \beta )\), and \(P_2^\pm =(I\pm S_2)/2\) where
$$\begin{aligned} (S_2 f)(t):=\frac{1}{\pi i}\int \limits _0^\infty \left( \frac{t}{\tau }\right) ^{1/2-1/p}\frac{f(\tau )}{\tau -t}\,d\tau , \quad t\in \mathbb {R}_+, \end{aligned}$$
is the weighted Cauchy singular integral operator. We prove that if \(\alpha ',\beta '\) and \(c,d\) are continuous on \(\mathbb {R}_+\) and slowly oscillating at \(0\) and \(\infty \), and
$$\begin{aligned} \limsup _{t\rightarrow s}|c(t)|<1, \quad \limsup _{t\rightarrow s}|d(t)|<1, \quad s\in \{0,\infty \}, \end{aligned}$$
then the operator \((I-cU_\alpha )P_2^++(I-dU_\beta )P_2^-\) is Fredholm on \(L^p(\mathbb {R}_+)\) and its index is equal to zero. Moreover, its regularizers are described.
  相似文献   

9.
In this paper we perform a blow-up and quantization analysis of the fractional Liouville equation in dimension 1. More precisely, given a sequence \(u_k :\mathbb {R}\rightarrow \mathbb {R}\) of solutions to
$$\begin{aligned} (-\Delta )^\frac{1}{2} u_k =K_ke^{u_k}\quad \text {in} \quad \mathbb {R}, \end{aligned}$$
(1)
with \(K_k\) bounded in \(L^\infty \) and \(e^{u_k}\) bounded in \(L^1\) uniformly with respect to k, we show that up to extracting a subsequence \(u_k\) can blow-up at (at most) finitely many points \(B=\{a_1,\ldots , a_N\}\) and that either (i) \(u_k\rightarrow u_\infty \) in \(W^{1,p}_{{{\mathrm{loc}}}}(\mathbb {R}{\setminus } B)\) and \(K_ke^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}K_\infty e^{u_\infty }+ \sum _{j=1}^N \pi \delta _{a_j}\), or (ii) \(u_k\rightarrow -\infty \) uniformly locally in \(\mathbb {R}{\setminus } B\) and \(K_k e^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}\sum _{j=1}^N \alpha _j \delta _{a_j}\) with \(\alpha _j\ge \pi \) for every j. This result, resting on the geometric interpretation and analysis of (1) provided in a recent collaboration of the authors with T. Rivière and on a classical work of Blank about immersions of the disk into the plane, is a fractional counterpart of the celebrated works of Brézis–Merle and Li–Shafrir on the 2-dimensional Liouville equation, but providing sharp quantization estimates (\(\alpha _j=\pi \) and \(\alpha _j\ge \pi \)) which are not known in dimension 2 under the weak assumption that \((K_k)\) be bounded in \(L^\infty \) and is allowed to change sign.
  相似文献   

10.
Let G be a locally compact group, and let \(1\leqslant p < \infty \). Consider the weighted \(L^p\)-space \(L^p(G,\omega )=\{f:\int |f\omega |^p<\infty \}\), where \(\omega :G\rightarrow \mathbb {R}\) is a positive measurable function. Under appropriate conditions on \(\omega \), G acts on \(L^p(G,\omega )\) by translations. When is this action hypercyclic, that is, there is a function in this space such that the set of all its translations is dense in \(L^p(G,\omega )\)? Salas (Trans Am Math Soc 347:993–1004, 1995) gave a criterion of hypercyclicity in the case \(G=\mathbb {Z}\). Under mild assumptions, we present a corresponding characterization for a general locally compact group G. Our results are obtained in a more general setting when the translations only by a subset \(S\subset G\) are considered.  相似文献   

11.
We study the existence problem for a class of nonlinear elliptic equations whose prototype is of the form \(-\Delta _p u = |\nabla u|^p + \sigma \) in a bounded domain \(\Omega \subset \mathbb {R}^n\). Here \(\Delta _p\), \(p>1\), is the standard p-Laplacian operator defined by \(\Delta _p u=\mathrm{div}\, (|\nabla u|^{p-2}\nabla u)\), and the datum \(\sigma \) is a signed distribution in \(\Omega \). The class of solutions that we are interested in consists of functions \(u\in W^{1,p}_0(\Omega )\) such that \(|\nabla u|\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\), a space pointwise Sobolev multipliers consisting of functions \(f\in L^{p}(\Omega )\) such that
$$\begin{aligned} \int _{\Omega } |f|^{p} |\varphi |^p dx \le C \int _{\Omega } (|\nabla \varphi |^p + |\varphi |^p) dx \quad \forall \varphi \in C^\infty (\Omega ), \end{aligned}$$
for some \(C>0\). This is a natural class of solutions at least when the distribution \(\sigma \) is nonnegative and compactly supported in \(\Omega \). We show essentially that, with only a gap in the smallness constants, the above equation has a solution in this class if and only if one can write \(\sigma =\mathrm{div}\, F\) for a vector field F such that \(|F|^{\frac{1}{p-1}}\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\). As an important application, via the exponential transformation \(u\mapsto v=e^{\frac{u}{p-1}}\), we obtain an existence result for the quasilinear equation of Schrödinger type \(-\Delta _p v = \sigma \, v^{p-1}\), \(v\ge 0\) in \(\Omega \), and \(v=1\) on \(\partial \Omega \), which is interesting in its own right.
  相似文献   

12.
We study the nonlinear evolutionary euclidean bosonic string equation
$$\begin{aligned} u_t = \Delta e^{-c \Delta }\,u + U(t,u) , \quad c > 0 \; \end{aligned}$$
on the Euclidean space \({\mathbb {R}}^n\). We interpret the nonlocal operator \(\Delta e^{-c\,\Delta }\) using entire vectors of \(\Delta \) in \(L^2({\mathbb {R}}^n)\). We prove that it generates a bounded holomorphic \(C_0\)-semigroup on \(L^2({\mathbb {R}}^n)\) (so that it also satisfies maximal \(L^p\) regularity) and we show the well-posedness of the corresponding nonlinear Cauchy problem.
  相似文献   

13.
We give a direct proof of the fact that the \(L^p\)-norms of global solutions of the Boussinesq system in \({\mathbb {R}}^3\) grow large as \(t\rightarrow \infty \) for \(1<p<3\) and decay to zero for \(3<p\le \infty \), providing exact estimates from below and above using a suitable decomposition of the space–time space \({\mathbb {R}}^{+}\times {\mathbb {R}}^{3}\). In particular, the kinetic energy blows up as \(\Vert u(t)\Vert _2^2\sim ct^{1/2}\) for large time. This contrasts with the case of the Navier–Stokes equations.  相似文献   

14.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

15.
We continue the study of stability of solving the interior problem of tomography. The starting point is the Gelfand–Graev formula, which converts the tomographic data into the finite Hilbert transform (FHT) of an unknown function f along a collection of lines. Pick one such line, call it the x-axis, and assume that the function to be reconstructed depends on a one-dimensional argument by restricting f to the x-axis. Let \(I_1\) be the interval where f is supported, and \(I_2\) be the interval where the Hilbert transform of f can be computed using the Gelfand–Graev formula. The equation to be solved is \(\left. {\mathcal {H}}_1 f=g\right| _{I_2}\), where \({\mathcal {H}}_1\) is the FHT that integrates over \(I_1\) and gives the result on \(I_2\), i.e. \({\mathcal {H}}_1: L^2(I_1)\rightarrow L^2(I_2)\). In the case of complete data, \(I_1\subset I_2\), and the classical FHT inversion formula reconstructs f in a stable fashion. In the case of interior problem (i.e., when the tomographic data are truncated), \(I_1\) is no longer a subset of \(I_2\), and the inversion problems becomes severely unstable. By using a differential operator L that commutes with \({\mathcal {H}}_1\), one can obtain the singular value decomposition of \({\mathcal {H}}_1\). Then the rate of decay of singular values of \({\mathcal {H}}_1\) is the measure of instability of finding f. Depending on the available tomographic data, different relative positions of the intervals \(I_{1,2}\) are possible. The cases when \(I_1\) and \(I_2\) are at a positive distance from each other or when they overlap have been investigated already. It was shown that in both cases the spectrum of the operator \({\mathcal {H}}_1^*{\mathcal {H}}_1\) is discrete, and the asymptotics of its eigenvalues \(\sigma _n\) as \(n\rightarrow \infty \) has been obtained. In this paper we consider the case when the intervals \(I_1=(a_1,0)\) and \(I_2=(0,a_2)\) are adjacent. Here \(a_1 < 0 < a_2\). Using recent developments in the Titchmarsh–Weyl theory, we show that the operator L corresponding to two touching intervals has only continuous spectrum and obtain two isometric transformations \(U_1\), \(U_2\), such that \(U_2{\mathcal {H}}_1 U_1^*\) is the multiplication operator with the function \(\sigma (\lambda )\), \(\lambda \ge (a_1^2+a_2^2)/8\). Here \(\lambda \) is the spectral parameter. Then we show that \(\sigma (\lambda )\rightarrow 0\) as \(\lambda \rightarrow \infty \) exponentially fast. This implies that the problem of finding f is severely ill-posed. We also obtain the leading asymptotic behavior of the kernels involved in the integral operators \(U_1\), \(U_2\) as \(\lambda \rightarrow \infty \). When the intervals are symmetric, i.e. \(-a_1=a_2\), the operators \(U_1\), \(U_2\) are obtained explicitly in terms of hypergeometric functions.  相似文献   

16.
In this paper, we expand the study of the multiplication operators on the Lipschitz space of a tree begun in Colonna and Easley (Integral Equ Oper Theory 68:391–411, 2010) by focusing on their adjoint acting on a certain separable subspace of the Lipschitz space whose dual is isometrically isomorphic to \(\mathbf L^1\). We then study the properties of two useful operators \(\nabla \) and \(\Delta \) and use them (along with the multiplicative symbol \(\psi \)) to define the Toeplitz operator \(T_\psi \) on the space \(\mathbf L^p\) for \(1\le p \le \infty \). We give conditions for its boundedness and study its point spectrum.  相似文献   

17.
We find a concrete integral formula for the class of generalized Toeplitz operators \(T_a\) in Bergman spaces \(A^p\), \(1<p<\infty \), studied in an earlier work by the authors. The result is extended to little Hankel operators. We give an example of an \(L^2\)-symbol a such that \(T_{|a|} \) fails to be bounded in \(A^2\), although \(T_a : A^2 \rightarrow A^2\) is seen to be bounded by using the generalized definition. We also confirm that the generalized definition coincides with the classical one whenever the latter makes sense.  相似文献   

18.
A central limit theorem with explicit error bound, and a large deviation result are proved for a sequence of weakly dependent random variables of a special form. As a corollary, under certain conditions on the function \(f:[0,1] \rightarrow \mathbb {R}\) a central limit theorem and a large deviation result are obtained for the sum \(\sum _{n=0}^{N-1} f(x_n)\), where \(x_n\) is the base b van der Corput sequence for an arbitrary integer \(b \ge 2\). Similar results are also proved for the \(L^p\) discrepancy of the same sequence for \(1 \le p < \infty \). The main methods used in the proofs are the Berry–Esseen theorem and Fourier analysis.  相似文献   

19.
We investigate the weighted bounds for multilinear maximal functions and Calderón–Zygmund operators from \(L^{p_1}(w_1)\times \cdots \times L^{p_m}(w_m)\) to \(L^{p}(v_{\vec {w}})\), where \(1<p_1,\cdots ,p_m<\infty \) with \(1/{p_1}+\cdots +1/{p_m}=1/p\) and \(\vec {w}\) is a multiple \(A_{\vec {P}}\) weight. We prove the sharp bound for the multilinear maximal function for all such \(p_1,\ldots , p_m\) and prove the sharp bound for \(m\)-linear Calderón–Zymund operators when \(p\ge 1\).  相似文献   

20.
Yukiko Iwata 《Positivity》2016,20(2):355-367
Consider a constrictive Markov operator \(T:L^1(X, \Sigma , \mu ) \rightarrow L^1(X, \Sigma , \mu )\) defined on a finite measure space \((X, \Sigma , \mu )\). We give a necessary and sufficient condition for a constrictive Markov operator T which is an integral operator with stochastic kernel satisfying \(T\mathbf {1}_X=\mathbf {1}_X\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号