首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A new technique for sensing Ga(III) concentration based on polyvinyl alcohol-citrate capped gold nanoparticle– p- aminohippuric acid hybrid (or three-layer core-shell configurations) has been demonstrated. The p- aminohippuric acid capped citrate-gold nanoparticles were comfortably agglomerated in the presence of Ga(III), and the color of the reaction quickly turned from red to violet or blue. Under the detection conditions, a good linear relationship was ideally obtained between the ratio of the absorbance intensity at 620 nm to that at 520 nm (A620/A520). The linear response range, the detection, and quantification limit was 34.9–418.3 μg/L and 7.6 μg/L, and 25 μg/L, respectively. To reflect the accuracy, the developed sensing approach was evaluated against certified reference materials (TMDA 51.3 fortified water and TMDA 28.3 fortified water). This colorimetric strategy was displayed excellent selectivity for Ga(III) over other examined ions. Additionally, the colorimetric method was properly used to detect the concentrations of Ga in tap water and certified reference material samples with recoveries ranging from 95.4 to 102.0%, displaying that the colorimetric procedure could be safely used for a realistic application.  相似文献   

3.
Propericiazine is proposed as a new reagent for the spectrophotometric determination of gold(III). The reagent forms an orange-red-colored species with gold(III) instantaneously in 4–8 M phosphoric acid. The orange-red species exhibits maximum absorbance at 511 nm. Beer's law is valid over the concentration range 0.1–7.0 μg/ml. The molar absorptivity is found to be 3.85 × 104 liter mol−1 cm−1. The effects of acidity, time, order of addition of reagents, temperature, reagent concentration, and diverse ions are investigated.  相似文献   

4.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

5.
Summary The purple violet ruthenium(III)-diphenylcarbazone complex which is formed at p h 5–7, and has an absorption maximum at 530 nm with molar absorption coefficient 16.2·104l.cm–1.mole–1 is suggested for the estimation of 20–125g ruthenium(III) spectrophotometrically in 30–60% ethanol. The complex is stable over p h range 3.2–8.4. The limits of interference due to foreign ions have been studied.
Zusammenfassung Der bei p h 5 bis7 entstehende Ruthenium(III)-Diphenylcarbazon-Komplex hat ein Absorptionsmaximum bei 530 nm und einen Absorptionskoeffizienten von 16,2·104 l.cm–1.Mol–1. Die spektrophotometrische Bestimmung von 20 bis 125g Ruthenium(III) in 30 bis 60%igem Äthanol mit Hilfe dieses zwischen p h 3,2 und 8,4 beständigen Komplexes wurde vorgeschlagen. Die Störung durch Fremdionen wurde geprüft.
  相似文献   

6.
Vladescu L  Lerch-Gurguta R 《Talanta》1993,40(7):1127-1129
Spectrometric study on the complexation of Fe(III) with an organic reagent obtained by coupling 3-methyl-1-phenyl-5-pyrazolone with diazotized 3-hydroxy-4-amino-benzene sulphonic acid was carried out in alkaline solutions. A 1:2 Fe(III): reagent water soluble complex is formed. The optimum pH is 9.0-11.8. The maximum absorbance of the complex lies at lambda = 560 nm, where the absorbance of the reagent is low. The molar absorptivity is 9000 l.mole(-1).cm(-1) at pH = 11.6. The value of the stability constant determined at 20 +/- 1 degrees C, pH = 11.6 and lambda = 560 nm is 4 x 10(5)M. The Beer-Lambert law is followed for iron concentration in the 0.2-5.0 mug/ml range. The spectrophotometric method was tested on synthetic solutions and thus applied for determination of traces of Fe(III) in several samples of alkaline hydroxides and carbonates without the neutralization of the solutions.  相似文献   

7.
8.
A new spectrophotometric method for determination of furosemide is described. The method is based on the reaction of furosemide with ferric chloride in pH range 5.2–6.2 and producing a red water-soluble (2 1) complex with maximum absorbance at 513 nm. By applying the methods of Sommer and Job involving non-equimolar solutions the conditional stability constant of the complex, at the optimum pH of 5.7, and ionic strength =0.1M, is found to be 106.5. Beer's law is obeyed up to 8 mmol/l furosemide concentration. The detection limit of the method is 0.03 mg/ml. The relative standard deviation (n=20) is 1.03% and relative error of the method is 0.5%. The proposed method was found to be suitable for the accurate and reproducible analysis of furosemide in tablets and ampoules, what is pointed by high recovery values 98.78–100.6% and low values of relative standard deviations 1.68–2.08%. The results obtained show that the method is applicable to routine analysis.  相似文献   

9.
The colored complexes formed by the reaction of dinitrosoresorcinol with Cu(II) and Fe(III) is utilized for the microdetermination of both metal ions either alone or in a binary mixtures. Satisfactory results are obtained when the proper media are utilized in the presence of an excess of the organic ligand. The interference of some ions is also investigated.  相似文献   

10.
An extraction-free spectrophotometric method for the determination of cationic surfactants, such as cetylpyridinium chloride, cetyltrimethylammonium bromide and zephiramine is proposed, which is based on the formation of ternary complexes with Fe(III) and chrome azurol S. The molar ratio of the complex is 2:1:1 (Fe(III):chrome azurol S: cationic surfactant). The method is simple, rapid and sensitive, giving an apparent molar absorptivity of 4.5×104 L·mol?1-cm?1 and a linear range of 0.1–6.0 μmol/L cationic surfactants. The total cationic surfactant content can be determined directly in aqueous solutions by measuring the absorbance at 680 nm (pH 5.8). The method has been successfully applied to water samples.  相似文献   

11.
Malik AK  Rao AL 《Talanta》1997,44(2):177-183
A spectrophotometric method was developed for the determination of ferbam (iron(III) dimethyldithiocarbamate) by converting it into an iron-phenanthroline complex, which was then absorbed on microcystalline naphthalene in the presence of tetraphenylborate, and the absorbance was measured at 515 nm against a reagent blank. The molar absorptivity of the complex was 1.2 x 10(4)l mol(-1)cm(-1). Ten replicate analyses of a sample solution containing 150 mug of ferbam gave a relative standard deviation of 0.84%. Beer's law was obeyed over the concentration range 22.4-372.9 mug of ferbam. The effects of various factors such as reagent concentration and naphthalene, shaking time and diverse ions were studied in detail. The method is sensitive and selective and can be applied to the direct determination of ferbam in commercial samples and in mixtures containing various other dithiocarbamates (e.g. ziram, zineb and maneb) in foodstuffs.  相似文献   

12.
Gold nanoparticles are readily oxidized by Au(III) in the presence of cetyl-trimethylammonium bromide (CTAB). Oxidation occurs preferentially at surface sites with higher curvature. Conversely, oxidation with cyanide ions in the absence of CTAB leads to uniform oxidation over the whole surface. Examples of the spatially directed oxidation are provided using large, irregular spheres, nanocubes, and nanorods. We conclude that the mechanism of oxidation depends on whether the oxidant is attached to CTAB micelles. It is postulated that the CTAB micelles approach the nanoparticles preferentially at the tips, leading to spatially directed oxidation.  相似文献   

13.
An ITP method for the simultaneous determination of Fe(II) and Fe(III) in waters, based on separation of their EDTA and fluoride complexes, respectively, was developed. The leading electrolyte used consists of chlorides, La(III) as co-counter ion and is buffered with beta-alanine to pH = 3.5. The terminating electrolyte contains caproic acid and L-histidine (pH = 4.5). The method was validated and tested with samples of artificial, ground and treated water with good results, comparable to those obtained by other analytical techniques. Fe(II) and Fe(III) up to 20 mg/L were measured with an RSD = 1.4-1.5% and detection and determination limits of 0.8-0.9 and 3.0-3.5 mg/L, respectively. The ITP method can be recommended for routine utilization in hydroanalytical laboratories.  相似文献   

14.
Plectonema boryanum UTEX 485, a filamentous cyanobacterium, has been reacted with aqueous Au(S(2)O(3))(2)(3)(-) and AuCl(4)(-) solutions ( approximately 400-550 mg/L Au) at 25-100 degrees C for up to 1 month and at 200 degrees C for 1 day. The interaction of cyanobacteria with aqueous Au(S(2)O(3))(2)(3)(-) promoted the precipitation of cubic (100) gold nanoparticles (<10-25 nm) at membrane vesicles and admixed with gold sulfide within cells and encrusted on the cyanobacteria, whereas reaction with AuCl(4)(-) resulted in the precipitation of octahedral (111) gold platelets ( approximately 1-10 microm) in solutions and nanoparticles of gold (<10 nm) within bacterial cells. Functional groups imaged by negative ion TOF-SIMS on (111) faces of the octahedral platelets were predominantly Cl and CN, with smaller amounts of C(2)H and CNO.  相似文献   

15.
An ITP method for the simultaneous determination of Fe(II) and Fe(III) in waters, based on separation of their EDTA and fluoride complexes, respectively, was developed. The leading electrolyte used consists of chlorides, La(III) as co-counter ion and is buffered with β-alanine to pH = 3.5. The terminating electrolyte contains caproic acid and L-histidine (pH = 4.5). The method was validated and tested with samples of artificial, ground and treated water with good results, comparable to those obtained by other analytical techniques. Fe(II) and Fe(III) up to 20 mg/L were measured with an RSD = 1.4–1.5% and detection and determination limits of 0.8–0.9 and 3.0–3.5 mg/L, respectively. The ITP method can be recommended for routine utilization in hydroanalytical laboratories.  相似文献   

16.
Yatirajam V  Arya SP 《Talanta》1976,23(8):596-598
Vanadium(V) is rapidly reduced by dithionite to V(III) which is extracted as the oxinate into carbon tetrachloride. Vanadium is determined by measuring absorbance of the complex at lambda(max) = 420-425 nm with a sensitivity of 0.004 microg/cm(2) and Beer's law range of 0-7 microg/ml . Several mg of some important elements can be tolerated if they are masked. Molybdenum interferes seriously. The method has been applied to synthetic samples, rutile and ilmenite with satisfactory results. Using ordinary reagents and taking 10 min or less in series for a determination, the method has a sensitivity rarely exceeded by others with a much higher tolerance for other elements.  相似文献   

17.
18.
A spectrophotometric method employing 2-hydroxybenzaldiminoglycine is proposed for the determination of chromium(III). The results of the determinations are compared with those obtained by the standard diphenyl carbazide method. The presently developed method is direct, simple, rapid, selective, sensitive and precise. The text was submitted by the authors in English.  相似文献   

19.
20.
The tetrahydrazide of ethylenediamine tetraacetic acid (NH2NH)4-EDTA was synthesized from the EDTA ester and hydrazine hydrate in ethanolic solution, the resulting (NH2NH)4-EDTA being recrystallized in 60% ethanol. When the spectrophotometric study of the iron(III) (NH2NH)4-EDTA complex in aqueous solution was made two absorption maxima at 530 and 450 nm at pH 4.5 and 11.0, respectively, were found. Beer's law is obeyed in the range 1.0–20.0 μg Fe(III) ml?1 at 530 nm and pH 4.5 and 0.5–12.0 μg Fe(III) ml?1 at 450 nm and pH 11.0, the molar absorptivities being 1.95 × 103 1 mol?1 cm?1 at 530 nm and 3.35 × 103 1 mol?1 cm?1 at 450 nm, respectively. The Ringbom optimal interval falls between about 3 and 18 μg Fe(III) ml?1 at 530 nm and about 2–14 μg Fe(III) ml?1 at 450 nm. The reaction between the metal and the ligand was also investigated. The method has been successfully applied to the determination of iron in talcs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号