首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we consider a leader-following consensus problem of a group of autonomous agents with time-varying coupling delays. Two different cases of coupling topologies are investigated. At first, a necessary and sufficient condition is proved in the case when the interconnection topology is fixed and directed. Then a sufficient condition is proposed in the case when the coupling topology is switched and balanced. Numerical examples are also given to illustrate our results.  相似文献   

2.
孙永征  李望  阮炯 《中国物理 B》2013,22(3):30510-030510
In this paper,we consider the average-consensus problem with communication time delays and noisy links.We analyze two different cases of coupling topologies:fixed and switching topologies.By utilizing the stability theory of the stochastic differential equations,we analytically show that the average consensus could be achieved almost surely with the perturbation of noise and the communication time delays even if the time delay is time-varying.The theoretical results show that multi-agent systems can tolerate relatively large time delays if the noise is weak,and they can tolerate relatively strong noise if the time delays are low.The simulation results show that systems with strong noise intensities yield slow convergence.  相似文献   

3.
Jianxiang Xi  Zongying Shi  Yisheng Zhong 《Physica A》2011,390(23-24):4114-4123
Consensus analysis and design problems for high-order linear time-invariant swarm systems with time-varying delays are dealt with. First, a consensus subspace and a complement consensus subspace are introduced. By the state projection onto the two subspaces, consensus problems are converted into simultaneous stabilization problems of multiple time-delayed subsystems with low dimensions, and a method to analyze and design the consensus function is given. Then, sufficient conditions for consensus and consensualization are presented, which include only four linear matrix inequality constraints. Finally, theoretical results are applied to deal with cooperative control problems of multi-agent supporting systems.  相似文献   

4.
Feng Xiao  Long Wang   《Physica A》2006,370(2):364-380
In this paper, we discuss the dynamic behavior of networks of dynamic agents with general communication topologies. We first analyze the basic case: systems with communication topologies that have spanning trees, i.e., the systems that solve consensus problems. We establish an algebraic condition to characterize each agent's contributions to the final state. And we also study the influence of time-delays on each agent's contributions. Then, we investigate the general case: systems with weakly connected topologies. By using matrix theory, we prove that the states of internal agents will converge to a convex combination of boundary agents in the absence or presence of communication time-delays, and we also show that the coefficients of the convex combination are independent of time-delays even if the delays are time-varying. These results have broad applications in other areas, e.g., study of swarm behavior, formation control of vehicles, etc.  相似文献   

5.
严浙平  刘一博  周佳加  张伟  王璐 《中国物理 B》2017,26(4):40203-040203
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.  相似文献   

6.
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.  相似文献   

7.
We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov-Krasovskii functional and the utilization of the reciprocally convex approach, novel delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities, which can easily be solved by various effective optimization algorithms. One illustrative example is given to illustrate the effectiveness of the proposed methods.  相似文献   

8.
Yongzheng Sun  Donghua Zhao 《Physica A》2010,389(19):4149-393
In this paper, the leader-following consensus problem of noise perturbed multi-agent systems with time-varying delays is investigated. We analyze two different cases of coupling topologies: fixed topology and switching topology. Based on the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, it is analytically proved that the consensus could be achieved almost surely with the perturbation of noise and communication time delays. Furthermore, numerical examples are provided to illustrate the effectiveness of the theoretical results. The simulation results show that the speed of convergence in environments with relatively strong noise intensity is lower than that in environments with relatively weak noise intensity.  相似文献   

9.
We consider multi-agent systems with time-varying delays and switching interconnection topologies.By constructing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach,new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities(LMIs),which can be easily solved by using various effective optimization algorithms.Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

10.
Ke Peng  Yupu Yang 《Physica A》2009,388(2-3):193-208
In this paper, we study a leader-following consensus problem for a multi-agent system with a varying-velocity leader and time-varying delays. Here, the interaction graph among the followers is switching and balanced. At first, we propose a neighbor-based rule for every agent to track a leader whose states may not be measured. In addition, we consider the convergence analysis of this multi-agent system under two different conditions: the connection between the followers and the leader is time-invariant and time-varying. For the first case, a novel decomposition method is introduced to facilitate the convergence analysis. By utilizing a Lyapunov–Krasovskii functional, we obtain sufficient conditions for uniformly ultimately boundedness of the tracking errors. Finally, two simulations are also presented to illustrate our theoretical results.  相似文献   

11.
楼旭阳  崔宝同 《中国物理 B》2008,17(12):4434-4439
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.  相似文献   

12.
This Letter investigates the problem of synchronization in complex dynamical networks with time-varying delays. A periodically intermittent control scheme is proposed to achieve global exponential synchronization for a general complex network with both time-varying delays dynamical nodes and time-varying delays coupling. It is shown that the sates of the general complex network with both time-varying delays dynamical nodes and time-varying delays coupling can globally exponentially synchronize with a desired orbit under the designed intermittent controllers. Moreover, a typical network consisting of the time-delayed Chua oscillator with nearest-neighbor unidirectional time-varying delays coupling is given as an example to verify the effectiveness of the proposed control methodology.  相似文献   

13.
By employing the Lyapunov method and some inequality techniques, the global point dissipativity is studied for neural networks with both discrete time-varying delays and distributed time-varying delays. Simple sufficient conditions are given for checking the global point dissipativity of neural networks with mixed time-varying delays. The proposed linear matrix inequality approach is computationally efficient as it can be solved numerically using standard commercial software. Illustrated examples are given to show the usefulness of the results in comparison with some existing results.  相似文献   

14.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The novel delay-dependent criteria in terms of linear matrix inequalities (LMI) are derived based on free-weighting matrices technique and appropriate Lyapunov functional proposed recently. Numerical examples are given to illustrate the effectiveness and advantage of the proposed synchronization criteria.  相似文献   

15.
The consensus problem in directed networks with arbitrary finite time-varying communication delays under both fixed topology and switching topologies is investigated in this article. The dynamics of each missile in this leader-followers system is with linear form. Feedback linearization is used here to attain linear guidance law for each missile, which is the base law for cooperative. Based on graph theory, the consensus problem can be converted to the stability of corresponding error system. Then Lyapunov function method is used to analyze the stability of the error system. Consensus of networks with time-delays under switching topologies is proved using common Lyapunov function method. Simulations indicate the excellent performances of the algorithms in terms of accuracy and efficiency.  相似文献   

16.
The global exponential stability is investigated for neural networks with interval time-varying delays. Based on the Leibniz-Newton formula and linear matrix inequality technique, delay-dependent stability criteria are proposed to guarantee the exponential stability of neural networks with interval time-varying delays. Some numerical examples and comparisons are provided to show that the proposed results significantly improve the allowable upper and lower bounds of delays over some existing ones in the literature.  相似文献   

17.
This paper is concerned with high-order neural networks with proportional delays. The proportional delay is a time-varying unbounded delay which is different from the constant delay, bounded time-varying delay and distributed delay. By the nonlinear transformation yi(t) = ui( et)(i = 1, 2,..., n), we transform a class of high-order neural networks with proportional delays into a class of high-order neural networks with constant delays and timevarying coefficients. With the aid of Brouwer fixed point theorem and constructing the delay differential inequality, we obtain some delay-independent and delay-dependent sufficient conditions to ensure the existence, uniqueness and global exponential stability of equilibrium of the network. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.  相似文献   

18.
In this paper, some criteria are derived for global asymptotic stability of a class of neural networks with multiple constant or time-varying delays. Based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) approach, some delay-independent criteria for neural networks with multiple constant delays and delay-dependent criteria for neural networks with multiple time-varying delays are provided to guarantee global asymptotic stability of these networks. The main results are generalizations of some recent results reported in the literature.  相似文献   

19.
In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

20.
王树国  姚洪兴 《中国物理 B》2012,21(5):50508-050508
This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号