共查询到19条相似文献,搜索用时 46 毫秒
1.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine)(PMT)-modified glassy carbon electrode(GCE) to form a nano-Au/PMT composite-modified GCE(nano-Au/PMT/GCE).Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode.The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine(DA) and uric acid(UA) in phosphate buffer solution(pH = 7.00).Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0 ×10–8 to 10–6 mol/L for DA and 7.0 × 10–8 to 10–6 mol/L for UA.The detection limits were 3.7 × 10–8mol/L for DA and 4.5 × 10–8 mol/L for UA at a signal-to-noise ratio of 3.According to our experimental results,nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA. 相似文献
2.
采用一锅法制备聚多巴胺-纳米金修饰玻碳电极(PDA-AuNPs/GCE),用扫描电子显微镜(SEM)对修饰电极进行表面形貌分析,并研究芦丁在该修饰电极上的电化学行为。实验表明,PDA-AuNPs/GCE对芦丁有较好的电催化氧化性能,芦丁的氧化峰电流与其浓度在1.0×10-6~1.0×10-4mol·L-1范围内成线性关系,检测下限为2.3×10-7mol·L-1(S/N=3)。该修饰电极可用于复方芦丁片中芦丁含量的检测,效果良好。 相似文献
3.
《理化检验(化学分册)》2015,(8)
利用多电位脉冲沉积法制备纳米金修饰电极(AuNPs/GCE),再将L-精氨酸电聚合在AuNPs/GCE表面,制备出一种新型的聚L-精氨酸/AuNPs/GCE。采用原子力显微镜对上述电极进行了表征,并研究了多巴胺在其上的电化学行为。结果表明:在pH 5.7的磷酸盐缓冲溶液中,聚L-精氨酸/AuNPs/GCE对多巴胺的氧化有良好的电催化作用,多巴胺的氧化还原反应是受吸附控制的准可逆过程。多巴胺的浓度在8.0×10-7~1.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)为1.0×10-7 mol·L-1。加标回收率在96.5%~104%之间。对3.0×10-5 mol·L-1多巴胺溶液连续测定7次,峰电流的相对标准偏差为2.6%。 相似文献
4.
《电化学》2016,(1)
采用原位还原法制备金纳米粒子/聚多巴胺/碳纳米管(Au-PDA-MWCNTs)复合材料,并将其用于建立高灵敏检测核黄素(RF)的电化学方法.采用紫外-可见光谱、扫描电镜、X-射线能谱对Au-PDA-MWCNTs复合材料进行表征,采用循环伏安法和差示脉冲伏安法探讨核黄素在Au-PDA-MWCNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定.该方法对核黄素的检测在5×10~(-9)~1×10~(-5)mol·L~(-1)范围内呈良好线性关系(R=0.9906),检测限为1.7×10~(-9)mol·L~(-1).方法操作简便、抗干扰能力强,并成功实现了维生素药片中RF含量的测定. 相似文献
5.
采用三步法制备了金纳米粒子-石墨烯层层组装的复合材料,并将其修饰在玻碳电极上,制备成一种新型的同时检测抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)的电化学传感器。采用扫描电子显微镜(SEM)对复合材料进行了表征,并研究了传感器对AA、DA、UA电催化性能。结果表明:该传感器对AA、DA和UA的氧化具有很好的催化和分离效果,可实现AA、DA和UA的同时测定。在三者共存体系中,AA-DA、DA-UA、AA-UA的氧化峰电位差分别为152mV、161mV和313mV。线性范围分别为1.996×10-5~5.580×10-3、1.996×10-6~5.478×10-3和1.000×10-6~1.000×10-3 mol/L,检出限分别为1.200×10-5、1.030×10-7和4.100×10-7 mol/L。该修饰电极选择性好、稳定性高,有望用于实际样品中AA、DA和UA的同时检测。 相似文献
6.
《理化检验(化学分册)》2015,(7)
采用溶胶法制备了介孔碳/纳米金复合材料,并利用透射电子显微镜、扫描电子显微镜和X射线衍射仪进行了表征。将合成的复合材料修饰于玻碳电极表面,用循环伏安法同时测定多巴胺(DA)、抗坏血酸(AA)和尿酸(UA)。在pH 7.2磷酸盐缓冲溶液中,DA、AA和UA的氧化峰得到了很好的分离;和裸电极比,介孔碳/纳米金修饰电极对DA、AA和UA具有良好的电催化作用,DA、AA和UA的氧化峰的峰电流强度分别增加1.7,2.0,12倍,3种物质的浓度分别在0.20~45.8,4.0~792.0,0.06~166.0μmol·L-1范围内与其峰电流强度呈线性关系,检出限(3S/N)分别为0.075,7.5,0.021μmol·L-1。 相似文献
7.
利用在玻碳电极上修饰了TiO2-石墨烯-Nafion复合膜制得的修饰电极进行多巴胺(DA)和尿酸(UA)的同时测定。用循环伏安法(CV)和差分脉冲伏安法(DPV)研究了该修饰电极的电化学行为。在pH为7.0的磷酸盐缓冲液(PBS)中,修饰电极对于DA和UA的电化学氧化具有良好的电催化性能。DA和UA的氧化峰电流分别在2~120和60~300μmol/L浓度范围内呈良好的线性关系,检出限分别为0.066和0.102μmol/L。实验结果表明,TiO2-石墨烯-Nafion复合膜修饰电极显著提高了检测的灵敏度,并表现出良好的选择性和重现性。 相似文献
8.
9.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺 总被引:3,自引:0,他引:3
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。 相似文献
10.
采用原位还原法制备金纳米粒子/聚多巴胺/碳纳米管(Au-PDA-MWNTs)复合材料,并将其用于建立高灵敏检测核黄素的电化学方法.采用紫外–可见光谱、扫描电镜、x-射线能谱对Au-PDA-MWNTs复合材料进行表征,采用循环伏安法和差示脉冲伏安法探讨核黄素(RF)在Au-PDA-MWNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定.该方法对核黄素的检测在5×10-9 mol·L-1~1×10-5 mol·L-1的范围内呈良好的线性关系(R=0.9906),检测限为1.7×10-9 mol·L-1.本方法操作简便、抗干扰能力强,方法可行,因此该方法成功实现了维生素药片中RF含量的测定. 相似文献
11.
《Electroanalysis》2005,17(24):2281-2286
A poly(3,4‐ethylenedioxythiophene) (PEDOT) modified glassy carbon electrode (GCE) was used to determine uric acid in the presence of ascorbic acid at physiological pH facilitating a peak potential separation of ascorbic acid and uric acid oxidation (ca. 365 mV), which is the largest value reported so far in the literature. Also, an analytical protocol involving differential pulse voltammetry has been developed using a microchip electrode for the determination of uric acid in the concentration range of 1 to 20 μM in presence of excess of ascorbic acid. 相似文献
12.
Umesh Chandra B. E. Kumara Swamy Ongera Gilbert M. Pandurangachar Sathish Reddy S. Sharath Shankar B. S. Sherigara 《中国化学快报》2010,21(12):1490-1492
The electropolymerized film of amaranth was prepared on the surface of graphite pencil electrode (GPE) by using cyclic voltammetric technique. This poly (amaranth) film coated electrode exhibited an excellent electrocatalytic activity towards the detection of dopamine (DA) in presence of uric acid (UA) in 0.2 mol/L phosphate buffer solution at pH 7.0. The effect of interference study was carried out by using differential pulse voltammetric technique. The poly (amaranth) modified GPE was applied for the detection of DA in dopamine injection with satisfactory results. 相似文献
13.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3). 相似文献
14.
Mohammad Mazloum-Ardakani Mahboobe Abolhasani Bibi-Fatemeh Mirjalili Mohammad Ali Sheikh-Mohseni Afsaneh Dehghani-Firouzabadi Alireza Khoshroo 《催化学报》2014,(2)
A chemically modified carbon paste electrode (CPE), consisting of 2,2'-[ (1E)- (1,2- phenylenebis (azanylylidene)] bis (methanylylidene)]bis (benzene-1,4-diol) (PBD) and multiwalled carbon nano-tubes (CNTs), was used to study the electrocatalytic oxidation of dopamine using cyclic voltamme-try, chronoamperometry, and differential pulse voltammetry (DPV). First, the electrochemical be-havior of the modified electrode was investigated in buffer solution. Then the diffusion coefficient, electrocatalytic rate constant, and electron-transfer coefficient for dopamine oxidation at the sur-face of the PBD-modified CNT paste electrode were determined using electrochemical approaches. It was found that under optimum conditions (pH = 7.0), the oxidation of dopamine at the surface of such an electrode occurred at about 200 mV, lower than that of an unmodified CPE. DPV of dopa-mine at the modified electrode exhibited two linear dynamic ranges, with a detection limit of 1.0 μmol/L. Finally, DPV was used successfully for the simultaneous determination of dopamine, uric acid, and folic acid at the modified electrode, and detection limits of 1.0, 1.2, and 2.7 μmol/L were obtained for dopamine, uric acid, and folic acid, respectively. This method was also used for the determination of dopamine in a pharmaceutical preparation using the standard addition method. 相似文献
15.
Mohammad Mazloum-Ardakani Mahboobe Abolhasani Bibi-Fatemeh Mirjalili Mohammad Ali Sheikh-Mohseni Afsaneh Dehghani-Firouzabadi Alireza Khoshroo 《催化学报》2014,35(2):201-209
A chemically modified carbon paste electrode (CPE), consisting of 2,2''-[(1E)-(1,2-phenylenebis(azanylylidene)] bis(methanylylidene)]bis(benzene-1,4-diol) (PBD) and multiwalled carbon nanotubes (CNTs), was used to study the electrocatalytic oxidation of dopamine using cyclic voltammetry, chronoamperometry, and differential pulse voltammetry (DPV). First, the electrochemical behavior of the modified electrode was investigated in buffer solution. Then the diffusion coefficient, electrocatalytic rate constant, and electron-transfer coefficient for dopamine oxidation at the surface of the PBD-modified CNT paste electrode were determined using electrochemical approaches. It was found that under optimum conditions (pH = 7.0), the oxidation of dopamine at the surface of such an electrode occurred at about 200 mV, lower than that of an unmodified CPE. DPV of dopamine at the modified electrode exhibited two linear dynamic ranges, with a detection limit of 1.0 μmol/L. Finally, DPV was used successfully for the simultaneous determination of dopamine, uric acid, and folic acid at the modified electrode, and detection limits of 1.0, 1.2, and 2.7 μmol/L were obtained for dopamine, uric acid, and folic acid, respectively. This method was also used for the determination of dopamine in a pharmaceutical preparation using the standard addition method. 相似文献
16.
Hanumanthrayappa Manjunatha Doddahalli Hanumantharayudu Nagaraju Gurukar Shivappa Suresh Thimmappa Venkatarangaiah Venkatesha 《Electroanalysis》2009,21(20):2198-2206
The properties of graphite electrode (Gr) modified with poly(diallyl dimethyl ammonium chloride) (PDDA) for the detection of uric acid (UA) in the presence of dopamine (DA) and high concentration of ascorbic acid (AA) have been investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The polymer modified graphite electrode was prepared by a very simple method just by immersing the graphite electrode in PDDA solution for 20 minutes. The PDDA/Gr modified electrode displayed excellent electrocatalytic activity towards the oxidation of UA, DA and AA compared to that at the bare graphite electrode. The electrochemical oxidation signals of UA, DA and AA are well resolved into three distinct peaks with peak potential separations of 220 mV, 168 mV and 387 mV between AA‐DA, DA‐UA and AA‐UA respectively in cyclic voltammetry studies and the corresponding peak potential separations are 230 mV, 130 mV and 354 mV respectively in differential pulse voltammetry. The lowest detection limits obtained for UA, DA and AA were 1×10?7 M, 2×10?7 M and 800×10?9 M respectively. The PDDA/Gr electrode efficiently eliminated the interference of DA and a high concentration of AA in the determination of UA with good selectivity, sensitivity and reproducibility. The modified electrode was also successfully applied for simultaneous determination of UA, DA and AA in their ternary mixture. 相似文献
17.
DU Jian-shi YANG Qing-biao BAI Jie WANG Shu-gang ZHANG Chao-qun LI Yao-xian 《高等学校化学研究》2007,23(5):538-540
Poly(N-vinylpyrrolidone)(PVP)nanofibers containing gold nanoparticles were prepared by electrospinning method.This simple route was used to prepare composites on a large scale,and the syntheses are simple.The optical property of gold nanoparticles in PVP aqueous solution was investigated by UV-Visible absorption spectra.The morphology of the fibers and the distribution of particles were characterized by transmission electron microscopy.The structure of the composite was characterized by Fourier transform infrared spectroscopy. 相似文献
18.
Excessive uric acid levels in the human body (hyperuricemia) are the main causes of kidney stones and diabetes. In this study, a layer-by-layer arrangement of polymers and nanocomposites is used as a new electrode sensing material for rapid and direct electrochemical determination of uric acid (UA). The electrode surface architecture was constructed by the incorporation of poly (amidoamine) dendrimer with 0.5 generation (poly (amidoamine) [PAMAM] [D-G0.5]) of multiwalled carbon nanotube-silver nanoparticles (MWCNT-AgNP) and a poly (neutral-red) (poly [NR]) polymer. The PAMAM (D-G0.5)/MWCNT-AgNP/poly (NR)-coated electrode has a good electrocatalytic activity for the determination of UA using cyclic voltammetry and showed remarkable enhancement in current response at a low-oxidation potential (0.3 V). Under optimal conditions, the developed electrochemical sensor showed an excellent and wide linear range for the determination of UA (i.e. 0.016 μM–2500 μM), and the limit of detection was found to be 0.005 μM. The modified sensor system demonstrated excellent sensitivity and selectivity toward the detection of UA in the presence of interfering substances, which are commonly found in urine and human fluid samples. Furthermore, the developed sensor has represented both reproducibility and excellent stability for the UA determination in real samples (human urine). 相似文献
19.
A nano-composite of DNA/poly(p-aminobenzensulfonic acid) bi-layer modified glassy carbon electrode as a biosensor was fabricated by electro-deposition method. The DNA layer was electrochemically deposited on the top of electropolymerized layer of poly(p-aminobenzensulfonic acid) (Pp-ABSA). Scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectrum were used for characterization. It demonstrated that the deposited Pp-ABSA formed a 2-D fractal patterned nano-structure on the electrode surface, and which was further covered by a uniform thin DNA layer. Cyclic voltammetry and electrochemical impedance spectrum were used to characterize the deposition, and demonstrated the conductivity of the Pp-ABSA layer. The biosensor was applied to the detection of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). In comparison with DNA and Pp-ABSA single layer modified electrodes, the composite bi-layer modification provided superior electrocatalytic actively towards the oxidation of DA, UA and AA, and separated the originally overlapped differential pulse voltammetric signals of UA, DA and AA oxidation at the bare electrode into three well-defined peaks at pH 7 solution. The peak separation between AA and DA, AA and UA was 176 mV and 312 mV, respectively. In the presence of 1.0 mM AA, the anodic peak current was a linear function of the concentration of DA in the range 0.19-13 microM. The detection limit was 88 nM DA (s/n=3). The anodic peak current of UA was also a linear function of concentration in the range 0.4-23 microM with a detection limit of 0.19 microM in the presence of 0.5 mM AA. The superior sensing ability was attributed to the composite nano-structure. An interaction mechanism was proposed. 相似文献