首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
仲亚军  刘娇  梁文强  赵生妹 《物理学报》2015,64(1):14202-014202
鬼成像方案实现所需设备、成像的质量以及成像所花的时间是决定鬼成像技术可实用化的重要因素. 本文提出一种针对多散斑图的差分压缩鬼成像方案. 该方案通过连续探测多个独立的散斑图, 降低了热光鬼成像方案对探测器高时间分辨力的要求; 通过采用差分方法, 抑制了背景噪声和其他噪声源的干扰; 通过使用压缩感知重建算法, 有效地降低了鬼成像所需时间并同时提升成像的质量. 数值仿真结果表明, 对于二灰度“N” 图, 本方案在8000次的采样情形下与多散斑图鬼成像方案35000次采样的结果相比, 均方误差降低了96.9%、峰值信噪比提升15.1 dB. 对于八灰度“Pepper”图, 本方案与多散斑图鬼成像方案相比, PSNR提升11.4 dB. 本方案可降低探测设备的要求、提高成像质量、降低重建时间, 具有广阔的应用前景.  相似文献   

2.
In traditional ghost imaging, the entangled photon pairs produced from the spontaneous parametric down conversion(SPDC) process are used. There is an intrinsic disadvantage that the utilization efficiency of the photon pairs is very low. Inasmuch as all the correlated photon pairs produced by the degenerate SPDC process can be used to record the image of an object, the ghost imaging scheme we present here has a higher utilization efficiency of the photon pairs. We also investigate the robustness of our experimental scheme. The experimental results show that, no matter whether the photon-pair source is two light cones or two beam-like spots, the clear image of the object can be obtained. The slight rotation of the nonlinear crystal has no influence on the imaging quality.Our experimental results also demonstrate that when the part of the photon-pair source in the signal path or the idler path is blocked by unwanted things, the clear ghost image of the object can still be recorded.  相似文献   

3.
强度涨落在热光鬼成像中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
热光鬼成像的图像质量在实际应用中具有重要作用. 通过理论分析和数值模拟, 发现光场的强度涨落程度会影响热光鬼成像的对比度, 基于此, 提出可以通过调节热光场的平均强度和强度波动的方差来提高成像对比度, 并且研究了这一方法对成像信噪比的影响. 将这种方法与另一种提高成像对比度的方法——高阶鬼成像进行了对比, 所得结果将有助于提高对热光鬼成像的理解. 关键词: 鬼成像 强度涨落 对比度 信噪比  相似文献   

4.
In this paper, we investigated phase modulation-based computational ghost imaging. According to the results of numerical simulations, we found that the range of the random phase affects the quality of the reconstructed image. Besides,compared with those amplitude modulation-based computational ghost imaging schemes, introducing random phase modulation into the computational ghost imaging scheme could significantly improve the spatial resolution of the reconstructed image, and also extend the field of view.  相似文献   

5.
鬼成像是一种能够透过大雾等恶劣环境的成像技术。针对传统鬼成像重建图像存在噪声较多、图像对比度较低等问题,将非局部广义全变分方法用于鬼成像的图像重建之中,提出基于非局部广义全变分的计算鬼成像重建方法。所提方法构造了一种非局部相关性权重设计梯度算子,将其代入全变分重建算法中,使得重建的图像能有效去除噪声的同时实现细节较好的还原。首先在不同条件下进行仿真模拟,得到所提方法的峰值信噪比相对其他方法提升1 dB左右,且具有更好的主观视觉效果,进而设计并搭建实验平台对算法的有效性进行验证,实验结果证明了所提方法在去除噪声和细节重建等方面的优越性。  相似文献   

6.
李明飞  阎璐  杨然  寇军  刘院省 《物理学报》2019,68(9):94204-094204
从关联成像理论出发,提出了日光场在实际大气湍流环境中强度点对点自关联成像理论,并进行了实验验证,分析了太阳光强度二阶自关联成像和强度点对点二阶自关联成像的区别.研究结果表明,太阳光场的点对点四阶自关联,即强度的二阶点对点自关联,可实现消大气湍流成像.为验证理论有效性,利用外场实验进行了验证,获得优于17 km距离的消湍流成像结果.理论和实验均表明,太阳光强度涨落的点对点自关联可实现消大气湍流成像.相比于相机直接成像,本文成像方法消除了大气湍流影响,同时该方案极大提升了关联成像技术的实用性,可直接用于远距离消大气湍流的高质量成像,增加图像识别率.理论表明,任何成像过程中波前受相位扰动影响的波段,如红外、紫外等,均可利用本文方法消除影响,成果具有较大实用价值.  相似文献   

7.
肺癌荧光图象的伪彩色增强处理   总被引:5,自引:0,他引:5  
近年来,作者开发了肿瘤荧光成象法用于诊断和定位早期支气管癌.由于所获得的荧光图象使用了象增强器进行增益放大,因此还消除了肺癌荧光图象的彩色信息.本文给出了一种荧光图象伪彩色增强处理的方法,并证实了伪彩色增强技术用于早期肺癌荧光诊断的可行性.经增强处理后,内镜医生只要根据彩色视频图象中与黑白荧光图象强度相对应的颜色就可以鉴别肺癌存在与否.同增强处理前的黑白图象相比,医生从伪彩色图象中获得了病灶内部结构、边缘效果和立体感方面的更多信息.临床结果表明可疑组织与正常组织之间获得了足够高的颜色衬比,有助于诊断早期肺癌病灶.  相似文献   

8.
Yi Kang 《中国物理 B》2021,30(12):124207-124207
A novel ghost imaging-based optical cryptosystem for multiple images using the integral property of the Fourier transform is proposed. Different from other multiple-image encryption schemes, we mainly construct the modulation patterns related to the plaintext images to realize the encrypted transmission of multiple images. In encryption process, the first image is encrypted by the ghost imaging encryption scheme, and the intensity sequence obtained by the bucket detector is used as the ciphertext. Then modulation patterns of other images are constructed by using the integral property of the Fourier transform and used as the keys. Finally, the ciphertext and keys are transmitted to the receiver to complete the encryption process. During decryption, the receiver uses different keys to decrypt the ciphertext and gets different plaintext images, and decrypted images have no image aliasing problem. Experiments and simulations verify the feasibility, security, and robustness of the proposed scheme. This scheme has high scalability and broad application prospect, which provides a new idea for optical information encryption.  相似文献   

9.
Shao-Ying Meng 《中国物理 B》2022,31(2):28702-028702
It is generally believed that, in ghost imaging, there has to be a compromise between resolution and visibility. Here we propose and demonstrate an iterative filtered ghost imaging scheme whereby a super-resolution image of a grayscale object is achieved, while at the same time the signal-to-noise ratio (SNR) and visibility are greatly improved, without adding complexity. The dependence of the SNR, visibility, and resolution on the number of iterations is also investigated and discussed. Moreover, with the use of compressed sensing the sampling number can be reduced to less than 1% of the Nyquist limit, while maintaining image quality with a resolution that can exceed the Rayleigh diffraction bound by more than a factor of 10.  相似文献   

10.
We present a scheme that is able to achieve the ghost imaging with broad distance. The physical nature of our scheme is that the different wavelength beams are separated in free space by an optical media according to the slow light or dispersion principle. Meanwhile, the equality of the optical distance of the two light arms is not violated. The photon correlation is achieved by the rotating ground glass plate(RGGP) and spatial light modulator(SLM), respectively. Our work shows that a monochromic ghost image can be obtained in the case of RGGP. More importantly, the position(or distance) of the object can be ascertained by the color of the image. Thus, the imaging and ranging processes are combined as one process for the first time to the best of our knowledge. In the case of SLM, we can obtain a colored image regardless of where the object is.  相似文献   

11.
We propose a compressed ghost imaging scheme based on differential speckle patterns,named CGI-DSP.In the scheme,a series of bucket detector signals are acquired when a series of random speckle patterns are employed to illuminate an unknown object.Then the differential speckle patterns(differential bucket detector signals) are obtained by taking the difference between present random speckle patterns(present bucket detector signals) and previous random speckle patterns(previous bucket detector signals).Finally,the image of object can be obtained directly by performing the compressed sensing algorithm on the differential speckle patterns and differential bucket detector signals.The experimental and simulated results reveal that CGI-DSP can improve the imaging quality and reduce the number of measurements comparing with the traditional compressed ghost imaging schemes because our scheme can remove the environmental illuminations efficiently.  相似文献   

12.
Experimenatal results on the development of a Laser-Induced Fluorescence Bronchoscopy(LIFB) for the detection and localization of early lung cancer are reported in this paper. The system utilizes fluorescence of photosensitizer drug to provide real time video imaging for the examined lung tissue. Color filters are used to differentiate signal from background and a computer image processing technique is also applied to subtract the background. Moreover, a pseudocolor contrast enhancement method was developed to enhance the fluorescence image displayed on the vidio monitor. Suspicious areas are identified by pseudocolor image to guide biopsy, and several clinical trials show that sensitivity and contrast capability of the system should permit the detection and localization of early lung cancer.  相似文献   

13.
Experimenatal results on the development of a Laser-Induced Fluorescence Bronchoscopy(LIFB) for the detection and localization of early lung cancer are reported in this paper. The system utilizes fluorescence of photosensitizer drug to provide real time video imaging for the examined lung tissue. Color filters are used to differentiate signal from background and a computer image processing technique is also applied to subtract the background. Moreover, a pseudocolor contrast enhancement method was developed to enhance the fluorescence image displayed on the vidio monitor. Suspicious areas are identified by pseudocolor image to guide biopsy, and several clinical trials show that sensitivity and contrast capability of the system should permit the detection and localization of early lung cancer.  相似文献   

14.
杨哲  赵连洁  赵学亮  秦伟  李俊林 《中国物理 B》2016,25(2):24202-024202
Lensless ghost imaging has attracted much interest in recent years due to its profound physics and potential applications. In this paper we report studies of the robust properties of the lensless ghost imaging system with a pseudo-thermal light source in a strongly scattering medium. The effects of the positions of the strong medium on the ghost imaging are investigated. In the lensless ghost imaging system, a pseudo-thermal light is split into two correlated beams by a beam splitter. One beam goes to a charge-coupled detector camera, labeled as CCD2. The other beam goes to an object and then is collected in another charge-coupled detector camera, labeled as CCD1, which serves as a bucket detector. When the strong medium, a pane of ground glass disk, is placed between the object and CCD1, the bucket detector, the quality of ghost imaging is barely affected and a good image could still be obtained. The quality of the ghost imaging can also be maintained, even when the ground glass is rotating, which is the strongest scattering medium so far. However, when the strongly scattering medium is present in the optical path from the light source to CCD2 or the object, the lensless ghost imaging system hardly retrieves the image of the object. A theoretical analysis in terms of the second-order correlation function is also provided.  相似文献   

15.
Hui Guo 《中国物理 B》2022,31(8):84201-084201
We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.  相似文献   

16.
We report on a delayed-choice quantum eraser experiment based on a two-photon imaging scheme using entangled photon pairs. After the detection of a photon which passed through a double-slit, a random delayed choice is made to erase or not erase the which-path information by the measurement of its distant entangled twin; the particle-like and wave-like behavior of the photon are then recorded simultaneously and respectively by only one set of joint detection devices. The present eraser takes advantage of two-photon imaging. The complete which-path information of a photon is transferred to its distant entangled twin through a “ghost" image. The choice is made on the Fourier transform plane of the ghost image between reading “complete information" or “partial information" of the double-path.  相似文献   

17.
We propose a color ghost imaging approach where the object is illuminated by three-color non-orthogonal random patterns. The object’s reflection/transmission information is received by only one single-pixel detector, and both the sparsity constraint and non-local self-similarity of the object are utilized in the image reconstruction process. Numerical simulation results demonstrate that the imaging quality can be obviously enhanced by ghost imaging via sparsity constraint and nonlocal self-similarity(GISCNL), compared with the reconstruction methods where only the object’s sparsity is used. Factors affecting the quality of GISCNL, such as the measurement number and the detection signal-to-noise ratio, are also studied.  相似文献   

18.
内掩式透射地基日冕仪中杂光鬼像的消除   总被引:1,自引:0,他引:1  
为了消除杂散光对日冕仪成像质量的影响,分析了工作波段为530~555 nm的内掩式透射地基日冕仪(其视场为±1.1~3R⊙,分辨率为13.5μm,口径为120 mm,系统F数为8.2)物镜的多次反射形成的鬼像。基于鬼像形成原理,完成建模模拟,提出了结构性遮拦措施,并通过实验论证了遮拦结构对鬼像有良好的遮拦效果,同时验证了鬼像的光强和物镜边缘衍射光基本一致。实验还显示:鬼像的尺寸和模拟基本一致,直径均约为0.9 mm。消除鬼像后,内掩式透射日冕仪消杂光能力和成像质量进一步提高,实现了对日冕的有效观测。  相似文献   

19.
A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.  相似文献   

20.
分辨率是成像系统的一个重要参数, 获得高分辨率图像一直是鬼成像系统的一个目标. 本文提出了以成像系统点扩散函数作为先验知识, 基于稀疏测量的超分辨压缩感知鬼成像重建模型. 搭建了一套计算鬼成像实验装置, 用于验证该模型对于提高鬼成像系统分辨率的有效性, 并与传统的鬼成像计算模型进行了对比. 实验表明, 利用该模型可突破成像系统衍射极限分辨率的限制, 得到超分辨鬼成像. 关键词: 鬼成像 压缩感知 超分辨 稀疏测量  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号