首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于双参数弹性基础模型,研究了梯度弹性基础上正交异性薄板的屈曲问题. 首先,基于能量法与变分原理,给出了梯度弹性基础上正交异性薄板的屈曲控制方程,并得到了梯度弹性基础刚度系数K1 与K2的计算式;进而,通过将位移函数采用三角函数展开的方法,给出了单向压缩载荷作用下、四边简支正交异性弹性基础板屈曲载荷的计算式;在算例中,通过将该文的解退化到单纯的正交异性板,并与经典弹性解比较,证明了理论的正确性;最后,求解了弹性模量在厚度方向上呈幂律分布的梯度基础上的薄板屈曲问题,分析了基础上下表层材料弹性模量比与体积分数指数对屈曲载荷的影响.  相似文献   

2.
The mechanism of imperfection sensitivity of elastic-plastic plates under compression is complex as they undergo elastic and/or plastic buckling, dependent on their width-thickness ratio. For elastic buckling, the Koiter power law is an established means to describe the imperfection sensitivity. Yet, for plastic buckling, there is no such an established way to describe it. In this paper, the quadratic power law is advanced to describe imperfection-insensitive plastic buckling behavior. The Koiter power law is extended by implementing the quadratic law so as to describe the elastic and plastic buckling in a synthetic manner. The finite-displacement, elastic-plastic analysis was conducted on simply-supported square plates under compression by varying the plate thickness and the initial deflection of a sinusoidal form. In association with an increase of the plate slenderness parameter (decrease of plate thickness), the predominant buckling is shown to change from (1) plastic buckling to (2) unstable elastic-plastic buckling and to (3) elastic stable bifurcation followed by a maximum point of load. In accordance with the change of the mechanism of buckling, the power law is changed pertinently to describe the complex imperfection sensitivity of the compression plates in a synthetic manner. The extended imperfection sensitivity law is thus advanced as a simple and strong tool to describe the ultimate buckling strength of elastic-plastic plates.  相似文献   

3.
Stress distributions are measured around the reinforced circular hole in an infinite plate subjected to uniaxial tension. Test plates are made of aluminum and reinforcing rings are of aluminum, brass, copper and mild steel. The relationships between stress-concentration factors, the ratio of Young's moduli of a plate and rings and dimensions of rings are studied. Results are compared with those obtained by the other authors and Gurney's theoretical results.  相似文献   

4.
The bending response for exponentially graded composite (EGC) sandwich plates is investigated.The three-layer elastic/viscoelastic/elastic sandwich plate is studied by using the sinusoidal shear deformation plate theory as well as other familiar theories.Four types of sandwich plates are considered taking into account the symmetry of the plate and the thickness of each layer.The effective moduli and Illyushin’s approximation methods are used to solve the equations governing the bending of simply-supported EGC fiber-reinforced viscoelastic sandwich plates.Then numerical results for deflections and stresses are presented and the effects due to time parameter,aspect ratio,side-to-thickness ratio and constitutive parameter are investigated.  相似文献   

5.
为了研究冲击载荷作用下考虑应力波效应弹性矩形薄板的动力屈曲,根据动力屈曲发生瞬间的能量转换和守恒准则,导出板的屈曲控制方程和波阵面上的补充约束条件,真实的屈曲位移应同时满足控制方程和波阵面上的附加约束条件。满足上述条件,建立了该问题的完整数值解法,对屈曲过程中冲击载荷、屈曲模态和临界屈曲长度之间的关系进行研究,定量计算了横向惯性效应对提高薄板动力屈曲临界应力的贡献。研究表明:板的厚宽比一定时,临界屈曲长度随冲击载荷的增大而减小;由于屈曲时的横向惯性效应,应力波作用下薄板一阶临界力参数是相应边界板的静力失稳临界力参数的1.5倍;随着边界约束逐渐减弱,板临界力参数逐渐减小,动力特征参数逐渐增大。  相似文献   

6.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

7.
Buckling analysis of the functionally graded viscoelastic circular plates has not been carried out so far. In the present paper, a series solution is developed for buckling analysis of radially graded FG viscoelastic circular plates with variable thickness resting on two-parameter elastic foundations, based on Mindlin's plate theory. The complex modulus approach in combination with the elastic–viscoelastic correspondence principle is employed to obtain the solution for various edge conditions. A comprehensive sensitivity analysis is carried out to evaluate effects of various parameters on the buckling load. Results reveal that the viscoelastic behavior of the materials may postpone the buckling occurrence and the stiffness reduction due to the section variations may be compensated by the graded material properties.  相似文献   

8.
While studies of post-buckling behavior and load-carrying capacities of thin plates subjected to uniaxial compression have been limited to stable conditions, further post-buckling loading generates an unstable condition. The secondary buckling which occurs with snap-through to higher-order deflections under such unstable conditions has not been analyzed in detail as yet. In the first part of this paper, a thin square plate under uniaxial compression, which is simply supported along four edges, is considered. A method based on the second variation of the total potential energy is then proposed for evaluating the stability of the post-buckling equilibrium state and inevitable secondary buckling is derived analytically. The effects of various factors, such as initial imperfections, assumed virtual displacement pattern, post-buckling deflection pattern and in-plane boundary conditions, on the secondary buckling values are discussed. In part 2, secondary buckling of clamped plates is analyzed by use of the finite element method and the resultant numerical results are compared with experimental results.  相似文献   

9.
Large deflection and postbuckling responses of functionally graded rectangular plates under transverse and in-plane loads are investigated by using a semi-analytical approach. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The plate is assumed to be clamped on two opposite edges and the remaining two edges may be simply supported or clamped or may have elastic rotational edge constraints. The formulations are based on the classical plate theory, accounting for the plate-foundation interaction effects by a two-parameter model (Pasternak-type), from which Winkler elastic foundation can be treated as a limiting case. A perturbation technique in conjunction with one-dimensional differential quadrature approximation and Galerkin procedure are employed in the present analysis. The numerical illustrations concern the large deflection and postbuckling behavior of functional graded plates with two pairs of constituent materials. Effects played by volume fraction, the character of boundary conditions, plate aspect ratio, foundation stiffness, initial compressive stress as well as initial transverse pressure are studied.  相似文献   

10.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

11.
针对非均匀Winkler弹性地基上变厚度矩形板的自由振动问题,通过一种有效的数值求解方法——微分变换法(DTM),研究其无量纲固有频率特性。已知变厚度矩形板对边为简支边界条件,其他两边的边界条件为简支、固定或自由任意组合。采用DTM将非均匀Winkler弹性地基上变厚度矩形板无量纲化的自由振动控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程。数值结果退化为均匀Winker弹性地基上矩形板以及变厚度矩形板的情形,并与已有文献采用的不同求解方法进行比较,结果表明,DTM具有非常高的精度和很强的适用性。最后,在不同边界条件下分析地基变化参数、厚度变化参数和长宽比对矩形板无量纲固有频率的影响,并给出了非均匀Winkler弹性地基上对边简支对边固定变厚度矩形板的前六阶振型。  相似文献   

12.
We study the elastic stability of infinite inhomogeneous thin plates on an elastic foundation under in-plane compression. The elastic stiffness constants depend on the coordinate variable in the thickness direction of the plate. The elastic foundation is represented as a Winkler-type model characterized by linear and nonlinear spring constants. First we derive the Föppl–von Kármán equations by taking variations of the elastic strain energy. Next we develop the linear stability analysis of the plate under uniform in-plane compression and explicitly derive the critical loads and wave numbers for particular three cases. The effects of the material inhomogeneity, material orthotropy and loading orthotropy on the critical states are examined independently. Finally, we perform a weakly nonlinear analysis of the plate at the onset of the buckling instability. With the multiple scales method, the amplitude equations for the unstable modes that provide insight into the mode type and its amplitude are derived and then the effect of the material inhomogeneity on buckling modes are evaluated qualitatively.  相似文献   

13.
Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.  相似文献   

14.
ABSTRACT

Application of the Galerkin method to various fluid and structural mechanics problems that are governed by a single linear or nonlinear differential equation is well known [1-5]. Recently, the method has been extended to finite element formulations [6-10], In this paper the suitability of the Galerkin method for solution of large deflection problems of plates is studied. The method is first applied to investigate large deflection behavior of clamped isotropic plates on elastic foundations. After validity of the method is established, it is then extended to analyze problems of large deflection of clamped skew sandwich plates, both with and without elastic foundations. The plates are considered to be subjected to uniformly distributed loads. The governing differential equations for the sandwich plate in terms of displacements in Cartesian coordinates are first established and then transformed into skew coordinates. The nonlinear differential equations of the plates are then transformed into nonlinear algebraic equations, using the Galerkin method. These equations are solved using a Newton-Raphson iterative procedure. The parameters considered herein for large deflection behavior of skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle, shearing stiffnesses of the core, and foundation moduli. Numerical results are presented for skew sandwich plates for various skew angles and aspect ratios. Simplicity and quick convergence are the advantages of the method, in comparison with other much more laborious numerical methods that require extensive computer facilities.  相似文献   

15.
The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters. In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness. Project supported by the National Natural Science Foundation of China (No. 19772032).  相似文献   

16.
Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials is investigated in this article. The material properties of the plate are assumed to vary continuously through the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered. The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation plate theory using the energy method. The resulted stability equations are decoupled and solved analytically for the functionally graded rectangular plates with two opposite edges simply supported subjected to different types of thermal loading. A comparison of the present results with those available in the literature is carried out to establish the accuracy of the presented analytical method. The influences of power of functionally graded material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buckling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be served as benchmark results for researchers to validate their numerical and analytical methods in the future.  相似文献   

17.
In this paper, the free vibration and buckling of laminated homogeneous and non-homogeneous orthotropic truncated conical shells under lateral and hydrostatic pressures are studied. At first, the basic relations, the modified Donnell type dynamic stability and compatibility equations have been obtained for laminated orthotropic truncated conical shells, the Young's moduli and density of which vary piecewise continuously in the thickness direction. Applying superposition and Galerkin methods to the foregoing equations, the buckling pressures and dimensionless frequency parameter of laminated homogeneous and non-homogeneous orthotropic conical shells are obtained. The appropriate formulas for single-layer and laminated cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, the effects of the number and ordering of layers, the variations of conical shell characteristics, together and separately variations of the Young's moduli and densities of the materials of layers on the critical lateral and hydrostatic pressures, and frequency parameter are found for different mode numbers. The results are compared with other works.  相似文献   

18.
In this work the relationship between the structural disorder and the macroscopic mechanical behavior of nanoporous gold under uniaxial compression was investigated, using the finite element method. A recently proposed model based on a microstructure consisting of four-coordinated spherical nodes interconnected by cylindrical struts, whose node positions are randomly displaced from the lattice points of a diamond cubic lattice, was extended. This was done by including the increased density as result of the introduced structural disorder. Scaling equations for the elastic Poisson's ratio, the Young's modulus and the yield strength were determined as functions of the structural disorder and the solid fraction. The extended model was applied to identify the elastic–plastic behavior of the solid phase of nanoporous gold. It was found, that the elastic Poisson's ratio provides a robust basis for the calibration of the structural disorder. Based on this approach, a systematic study of the size effect on the yield strength was performed and the results were compared to experimental data provided in literature. An excellent agreement with recently published results for polymer infiltrated samples of nanoporous gold with varying ligament size was found.  相似文献   

19.
In this article, post-buckling and non-linear bending analysis of functionally graded annular sector plates based on three dimensional theory of elasticity in conjunction with non-linear Green strain tensor is considered. In-plane normal compressive loads have been applied to either radial, circumferential, or all edges of annular sector plates. Material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents while Poisson׳s ratio is assumed to be constant. The governing equations are developed based on the principle of minimum total potential energy and solved based on graded finite element method. Non-linear equilibrium equations are solved based on iterative Newton–Raphson method. The effects of material gradient exponent, different sector angles, thickness ratio, loading condition and two different boundary conditions on the post-buckling behavior of FGM annular sector plates have been investigated. Results denote that due to the stretching–bending coupling effects of the FGMs, the post-buckling behavior of movable simply supported FGM plates is not of the bifurcation-type buckling. Moreover, FGM annular sector plates subjected to uniaxial compression at radial edges show a non-linear bending behavior with unique and stable equilibrium paths following a flattening feature.  相似文献   

20.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号