首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
爆轰燃烧具有释热快、循环热效率高的特点. 斜爆轰发动机利用斜爆轰波进行燃烧组织, 在高超声速吸气式推进系统中具有重要地位. 以往研究主要关注斜爆轰波的起爆、驻定以及波系结构等, 缺少从整体层面出发对斜爆轰发动机开展推力性能分析. 本文将斜爆轰发动机内的流动和燃烧过程分解成进气压缩、燃料掺混、燃烧释热和排气膨胀4个基本模块并分别进行理论求解, 建立了斜爆轰发动机推力性能的理论分析模型. 在斜爆轰波系研究成果的基础上, 选取了过驱动斜爆轰、Chapman?Jouguet斜爆轰、过驱动正爆轰和斜激波诱导等容燃烧等4种燃烧模式来描述燃烧室内的燃烧释热过程, 并对比分析了不同燃烧模式对发动机比冲性能的影响. 此外, 还获得了不同来流参数、燃烧室参数和进排气参数等对发动机推力的影响规律, 发现来流马赫数和尾喷管的膨胀面积比是发动机理论燃料比冲的主要影响因素. 最后, 结合以往关于受限空间内斜爆轰波驻定特性等方面的研究成果, 提出了斜爆轰发动机燃烧室的设计方向.   相似文献   

2.
多柔体系统数值分析的模型降噪方法   总被引:2,自引:0,他引:2  
齐朝晖  曹艳  王刚 《力学学报》2018,50(4):863-870
多柔体系统的动力学方程通常是一组刚性微分方程, 目前普遍采用的刚性微分方程数值解法主要通过数值阻尼滤除系统响应中的高频分量, 其求解效率难以令人满意. 为了降低多柔体系统动力学方程的刚性, 从而可采用ODE45等常规微分方程求解器进行求解, 研究了在建模过程中滤除高频振荡分量的方法. 在以当前时刻为起点的短时间内对柔性体的应力进行均匀化, 用均匀化后的应力计算柔性体的变形虚功率, 由此得到的系统动力学方程的解中不含过高频率的弹性振动, 并且可以通过调节均匀化时间区间的长度参数控制滤波的范围. 数值算例表明: 这种模型降噪方法的计算效率和精度均不低于刚性微分方程求解器, 并且在刚性微分方程求解器失效的情况下模型降噪方法仍有良好的精度和效率. 本文所提的模型降噪方法可成为求解多柔体系统动力学方程的新途径.   相似文献   

3.
We study the MHD flow and also heat transfer in a viscoelastic liquid over a stretching sheet in the presence of radiation. The stretching of the sheet is assumed to be proportional to the distance from the slit. Two different temperature conditions are studied, namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with prescribed wall heat flux (PHF). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The resulting non-linear momentum differential equation is solved exactly. The energy equation in the presence of viscous dissipation (or frictional heating), internal heat generation or absorption, and radiation is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation using a new variable and using the Rosseland approximation for the radiation. The governing differential equations are solved analytically and the effects of various parameters on velocity profiles, skin friction coefficient, temperature profile and wall heat transfer are presented graphically. The results have possible technological applications in liquid-based systems involving stretchable materials.  相似文献   

4.
We have proved that any 3-dimensional dynamical system of ordinary differential equations (in short, 3D ODE) with time-independent invariants can be rewritten as Hamiltonian systems with respect to generalized Poisson brackets and the Hamiltonians are these invariants. As an example, we discuss the Kermack-Mckendrick model for epidemics in detail. The results we obtained are generalization of those obtained by Y. Nutku. First Received Nov. 22, 1993  相似文献   

5.
In this paper,a non-existence condition for homoclinic and heteroclinic orbits in n-dimensional,continuous-time,and smooth systems is obtained.Based on this result and an elementary example,it can be conjectured that there is a fourth kind of chaos in polynomial ordinary differential equation(ODE) systems characterized by the nonexistence of homoclinic and heteroclinic orbits.  相似文献   

6.
The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity are taken constant. Appropriate transformations yield the nonlinear ordinary differential systems. Convergent series solutions are developed and analyzed. The numerical results for the local Nusselt and Sherwood numbers are demonstrated. It is found that an increase in the strength of the Brownian motion decays the temperature noticeably. However, the rate of heat transfer and the concentration of the nanoparticles at the surface increase for larger Brownian motion parameters.  相似文献   

7.
常微分方程技术及其在固体力学计算中的应用   总被引:2,自引:0,他引:2  
袁驷 《力学学报》1992,24(1):109-115
常微分方程(ODE——Ordinary Differential Equation)边值问题的最新计算求解技术的迅速发展推出了一批高质高效的通用软件,而工程中大量的ODE问题并非呈现为这些求解器(Solver)所接受的标准形式。然而,运用一些简单的ODE变换技巧可以将大量的不同类型的特殊问题转化为标准形式。本文列举了若干常用的变换技巧,并广泛地应用于各种固体力学问题的计算中,使大量的ODE问题在形式上得到统一,得以用标准的ODE Solver方便有效地求解。  相似文献   

8.
A third-order ordinary differential equation (ODE) for thin film flow with both Neumann and Dirichlet boundary conditions is transformed into a second-order nonlinear ODE with Dirichlet boundary conditions.Numerical solutions of the nonlinear second-order ODE are investigated using finite difference schemes.A finite difference formulation to an Emden-Fowler representation of the second-order nonlinear ODE is shown to converge faster than a finite difference formulation of the standard form of the second-order nonlinear ODE.Both finite difference schemes satisfy the von Neumann stability criteria.When mapping the numerical solution of the second-order ODE back to the variables of the original third-order ODE we recover the position of the contact line.A nonlinear relationship between the position of the contact line and physical parameters is obtained.  相似文献   

9.
ODE conversion techniques and their applications in computational mechanics   总被引:3,自引:0,他引:3  
In this paper, a number of ordinary differential equation (ODE) conversion techniques for transformation of nonstandard ODE boundary value problems into standard forms are summarised, together with their applications to a variety of boundary value problems in computational solid mechanics, such as eigenvalue problem, geometrical and material nonlinear problem, elastic contact problem and optimal design problems through some simple and representative examples. The advantage of such approach is that various ODE boundary value problems in computational mechanics can be solved effectively in a unified manner by invoking a standard ODE solver. The project is supported by National Natural Science Foundation of China.  相似文献   

10.
针对最优控制问题(OCP)的辛数值方法研究及应用进行综述。主要涉及内容包括,动力学系统为常微分方程描述的一般无约束、含不等式约束和状态时滞的最优控制问题,微分代数方程描述的一般无约束、含不等式约束和含切换系统的最优控制问题,以及闭环最优控制问题。从间接法和直接法两个求解框架出发,重点介绍本课题组在保辛算法方面的研究工作。在间接法框架下,首先基于生成函数和变分原理,将OCP保辛离散为非线性方程组,再数值求解方程组。在直接法框架下,将OCP保辛离散为有限维的非线性规划问题(NLP),再数值求解。针对闭环最优控制问题,提出了保辛模型预测控制、滚动时域估计和瞬时最优控制算法。研究表明,保辛算法具有高精度和高效率的特点,在航空航天和机器人等领域有着广泛应用前景和价值。  相似文献   

11.
A mixed convection flow of an Oldroyd-B fluid in the presence of thermal radiation is investigated. The flow is induced by an inclined stretching surface. The boundary layer equations of the Oldroyd-B fluid in the presence of heat transfer are used. Appropriate transformations reduce partial differential equations to ordinary differential equations. A computational analysis is performed for convergent series solutions. The values of the local Nusselt number are numerically analyzed. The effects of various parameters on velocity and temperature are discussed.  相似文献   

12.
Applicability and performance of the extended Kantorovich method (EKM) to obtain highly accurate approximate closed form solution for bending analysis of a cylindrical panel is studied. Fully clamped panel subjected to both uniform and non-uniform loadings is considered. Based on the Love–Kirchhoff first approximation for thin shallow cylindrical panels, the governing equations of the problem in terms of three displacement components include a system of two second order and one forth order partial differential equations. The governing PDE system is converted to a double set of ODE systems by assuming separable functions for displacements together with utilization of the extended Kantorovich method. The resulted ODE systems are solved iteratively. In each iteration, exact closed form solutions are presented for both ODE systems. Rapid convergence and high accuracy of the method is shown for various examples. Both displacement and stress predictions show close agreement with other analytical and finite element analysis.  相似文献   

13.
The method of lines based on Hu Hai-chang's theory for the vibration and stability of moderate thick plates is developed. The standard nonlinear ordinary differential equation (ODE) system for natural frequencies and critical load is given by use of ODE techniques, and then any indicated eigenvalue could be obtained directly from ODE solver by employing the so-called initial eigenfunction technique instead of the mode orthogonality condition.Numerical examples show that the present method is very effective and reliable.  相似文献   

14.
Second-order ordinary differential equations (ODEs) with strong nonlinear stiffness terms (cubic nonlinearities) governing wave motions, dynamic crack propagations, nonlinear oscillations etc. in physics and nonlinear mechanics are analyzed. Selecting as guide line a second-order nonlinear ODE of the form of the forced Duffing equation and using admissible functional transformations it is possible to reduce it to an equivalent first-order nonlinear integrodifferential equation. The reduced equation is exact. In the limits of small or large values of the parameter characterizing this nonlinear problem, it is shown that further reductions lead to a nonlinear ODE of the Abel classes. Taking into account the known exact analytic solutions of this equivalent equation it is proved that there does not exist an exact analytic solution of this type of equations. However, in cases when convenient functional relations connecting all parameters of the corresponding null equation and the characteristics of the driving force exist, approximate analytic solutions to the problem under consideration are provided.  相似文献   

15.
本文用沿高度方向分段连续化的方法,对沿高度方向为阶形变截面,在平面内为任意斜向布置的框架-剪力墙-薄壁筒协同工作体系,建立了弯扭耦连的振动方程,用常微分方程求解器(COLSYS)求解了自振频率及相应的振型。  相似文献   

16.
The paper concerns a class of n-dimensional non-autonomous delay differential equations obtained by adding a non-monotone delayed perturbation to a linear homogeneous cooperative system of ordinary differential equations. This family covers a wide set of models used in structured population dynamics. By exploiting the stability and the monotone character of the linear ODE, we establish sufficient conditions for both the extinction of all the populations and the permanence of the system. In the case of DDEs with autonomous coefficients (but possible time-varying delays), sharp results are obtained, even in the case of a reducible community matrix. As a sub-product, our results improve some criteria for autonomous systems published in recent literature. As an important illustration, the extinction, persistence and permanence of a non-autonomous Nicholson system with patch structure and multiple time-dependent delays are analysed.  相似文献   

17.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

18.
In this paper we analyze the flow and heat transfer of an MHD fluid over an impermeable stretching surface with variable thermal conductivity and non-uniform heat source/sink in the presence of partial slip. The governing partial differential equations of the problem are reduced to nonlinear ordinary differential equations by using a similarity transformation. The temperature boundary conditions are assumed to be linear functions of the distance from the origin. Analytical solutions of the energy equations for Prescribed Surface Temperature (PST) and Prescribed Heat Flux (PHF) cases are obtained in terms of a hypergeometric function, without applying the boundary-layer approximation. The effects of the governing parameters on the flow and heat transfer fields are presented through tables and graphs, and they are discussed. Furthermore, the obtained numerical results for the skin friction, wall-temperature gradient and wall temperature are analyzed and compared with the available results in the literature for special cases.  相似文献   

19.
The self-similar singular solution of the fast diffusion equation with nonlinear gradient absorption terms are studied. By a self-similar transformation, the self-similar solutions satisfy a boundary value problem of nonlinear ordinary differential equation (ODE). Using the shooting arguments, the existence and uniqueness of the solution to the initial data problem of the nonlinear ODE are investigated, and the solutions are classified by the region of the initial data. The necessary and sufficient condition for the existence and uniqueness of self-similar very singular solutions is obtained by investigation of the classification of the solutions. In case of existence, the self-similar singular solution is very singular solution.  相似文献   

20.
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号