首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Transition metal dichalcogenide(TMD)monolayers attract great attention due to their specific structural,electronic and mechanical properties.The formation of their lateral heterostructures allows a new degree of flexibility in engineering electronic and optoelectronic dervices.However,the mechanical properties of the lateral heterostructures are rarely investigated.In this study,a comparative investigation on the mechanical characteristics of 1H,IT'and 1H/1T'heterostructure phases of different TMD monolayers including molybdenum disulfide(M0S2)molybdenum diselenide(MoSe2),Tungsten disulfide(WS2),and Tungsten diselenide(WSe2)was conducted by means of density functional theory(DFT)calculations.Our results indicate that the impact of the lateral heterostructures has a relatively weak mechanical strength for all the TMD monolayers.The significant correlation bet ween the mechanical properties of the TMD monolayers and their structural phases can be used to tune their stiffness of the materials.Our findings,therefore,suggest a novel strategy to manipulate the mechanical characteristics of TMDs by engineering their structural phases for their practical applications.  相似文献   

2.
Le Zhou 《中国物理 B》2022,31(7):76106-076106
Since the discovery of transition metal dichalcogenide (TMDC) nanoparticles (NPs) with the onion-like structure, many efforts have been made to develop their fabrication methods. Laser fabrication (LF) is one of the most promising methods to prepare onion-structured TMDC (or OS-TMDC) NPs due to its green, flexible, and scalable syntheses. In this mini-review article, we systematically introduce various laser-induced OS-TMDC (especially the OS-MoS2) NPs, their formation mechanism, properties, and applications. The preparation routes mainly include laser ablation in liquids and atmospheres, and laser irradiation in liquids. The various formation mechanisms are then introduced based on the different preparation routes, to describe the formations of the corresponding OS-NPs. Finally, some interesting properties and novel applications of these NPs are briefly demonstrated, and a short outlook is also given. This review could help to understand the progress of the laser-induced OS-TMDC NPs and their applications.  相似文献   

3.
Yinlu Gao 《中国物理 B》2022,31(11):117304-117304
The GaN-based heterostructures are widely used in optoelectronic devices, but the complex surface reconstructions and lattice mismatch greatly limit the applications. The stacking of two-dimensional transition metal dichalcogenide (TMD = MoS2, MoSSe and MoSe2) monolayers on reconstructed GaN surface not only effectively overcomes the larger mismatch, but also brings about novel electronic and optical properties. By adopting the reconstructed GaN (0001) surface with adatoms (N-ter GaN and Ga-ter GaN), the influences of complicated surface conditions on the electronic properties of heterostructures have been investigated. The passivated N-ter and Ga-ter GaN surfaces push the mid-gap states to the valence bands, giving rise to small bandgaps in heterostructures. The charge transfer between Ga-ter GaN surface and TMD monolayers occurs much easier than that across the TMD/N-ter GaN interfaces, which induces stronger interfacial interaction and larger valence band offset (VBO). The band alignment can be switched between type-I and type-II by assembling different TMD monolayers, that is, MoS2/N-ter GaN and MoS2/Ga-ter GaN are type-II, and the others are type-I. The absorption of visible light is enhanced in all considered TMD/reconstructed GaN heterostructures. Additionally, MoSe2/Ga-ter GaN and MoSSe/N-ter GaN have larger conductor band offset (CBO) of 1.32 eV and 1.29 eV, respectively, extending the range from deep ultraviolet to infrared regime. Our results revel that the TMD/reconstructed GaN heterostructures may be used for high-performance broadband photoelectronic devices.  相似文献   

4.
Transition metal dichalcogenide (TMD) semiconductors are attracting much attention in research regarding device physics based on their unique properties that can be utilized in spintronics and valleytronics. Although current studies concentrate on the monolayer form due to the explicitly broken inversion symmetry and the direct band gap, bulk materials also hold the capability of carrying spin and valley current. In this study, we report the methodology to continuously control the spin-orbit coupling (SOC) strength of bulk TMDs Mo1-xWxSe2 by changing the atomic ratio between Mo and W. The results show the size of band splitting at the K valley the measure of the coupling strength is linearly proportional to the atomic ratio of Mo and W. Our results thus demonstrate how to precisely tune the SOC coupling strength, and the collected information of which can serve as a reference for future applications of bulk TMDs.  相似文献   

5.
The explosion of interest in two-dimensional van der Waals materials has been in many ways driven by their layered geometry. This feature makes possible numerous avenues for assembling and manipulating the optical and electronic properties of these materials. In the specific case of monolayer transition metal dichalcogenide semiconductors, the direct band gap combined with the flexibility for manipulation of layers has made this class of materials promising for optoelectronics. Here, we review the properties of these layered materials and the various means of engineering these properties for optoelectronics. We summarize approaches for control that modify their structural and chemical environment, and we give particular detail on the integration of these materials into engineered optical fields to control their optical characteristics. This combination of controllability from their layered surface structure and photonic environment provide an expansive landscape for novel optoelectronic phenomena.  相似文献   

6.
本文利用基于密度泛函理论的第一性原理平面波赝势方法分别计算了本征及过渡金属掺杂单层MoS_2的晶格参数、电子结构和磁性性质.计算结果显示,过渡金属掺杂所引起的晶格畸变与杂质原子的共价半径有联系,但并不完全取决于共价半径的大小.分析电子结构可以看到,VIIB、VIII和IB族杂质中除Ag和Re外的掺杂体系都对外显示磁性,磁矩主要集中在掺杂的过渡金属原子上.掺杂体系的禁带区域都出现了数目不等的杂质能级,这些杂质能级主要由杂质的d、S的3p和Mo的4d轨道组成.  相似文献   

7.
Xian-Dong Li 《中国物理 B》2022,31(11):110304-110304
The Janus monolayer transition metal dichalcogenides (TMDs) $MXY$ ($M={\rm Mo}$, W, $etc$. and $X, Y={\rm S}$, Se, $etc$.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature $T_{\rm c}$, of which the Fermi surface (FS) sheets centered around both $ărGamma$ and $K (K')$ points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically, at relatively high chemical potentials, we obtain a time-reversal invariant $s + f + p$-wave mixed superconducting state, which is fully gapped and topologically nontrivial, $i.e.$, a $\mathbb{Z}_2$ topological state. On the other hand, a time-reversal symmetry breaking $d + p + f$-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number $|C|=6$ at appropriate pairing strength, demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.  相似文献   

8.
本文对Fe2-xYx(MoO4)3(x=0.0,0.2,0.4,0.5,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0)系列材料的相变及负膨胀性能进行了研究.通过对Fe2-xYx( MoO4)3系列材料的XRD和拉曼谱的分析发现,当x≤0.4时Fe2-xYxMo3O12在常温下是单斜结构;当x≥0.5时...  相似文献   

9.
Solid solutions of In_(2(1-x)(HfMg)_xMo_3O_(12) are synthesized by solid state reaction with the aim to reduce the phase transition temperature of In_2Mo_3O_(12) and improve its thermal expansion property.The effects of(HfMg)~(6+) incorporation on the phase transition and thermal expansion are investigated.It is shown that the monoclinic-to-orthorhombic phase transition temperature obviously decreases and the coefficient of thermal expansion(CTE) of the orthorhombic becomes less negative and approaches to zero with increasing the content of(HfMg)~(6+).A near zero thermal expansion covering the case at room temperature(RT) is achieved for the solid solutions with x ≥ 0.85,implying potential applications of this material in many fields.  相似文献   

10.
We theoretically study the temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides using the O′Donnell equation, \({E_g}(T) = {E_g}(0) - S\langle \hbar \omega \rangle [cloth(\frac{{\hbar \omega }}{{2{k_B}T}} - 1)]\). We develop a theoretical model for the quantitative estimation of the Huang–Rhys factor S and average phonon energy \(\langle \hbar \omega \rangle \) based on exciton coupling with longitudinal optical and acoustic phonons in the Fröhlich and deformation potential mechanisms, respectively. We present reasonable explanations for the fitted values of the Huang–Rhys factor and average phonon energy adopted in experiments. Comparison with experimental results reveals that the temperature dependence of the peak position in the excitonic spectra can be well reproduced by modulating the polarization parameter and deformation potential constant.  相似文献   

11.
The temperature variation of the lattice parameter of CsPbCl3 in the cubic phase has been studied by x-ray method, from a determination of the precision lattice parameter at various temperatures, ranging from 50°C to 400°C. The coefficient of thermal expansion of CsPbCl3 can be expressed by the quadratic equation,α T = 21.6 × 10−6 + 2.44 × 10−9 T + 5.90 × 10−11 T 2.  相似文献   

12.
李国会  徐宏来  向汝建  杜应磊  吴晶  向振佼  张越 《强激光与粒子束》2019,31(12):121002-1-121002-6
仿真分析了热膨胀系数不同的金属和玻璃胶合体在不同温度下的形变,同时使用热膨胀仪测试了不同金属的热膨胀系数,随后,将热膨胀系数不同的金属分别与相同材料的玻璃进行胶合,最后将胶合体置于半封闭空间并对其整体进行加热,采用哈特曼波前测试系统测试胶合体的形变。结果表明,胶合体的仿真数据和实验数据基本吻合。该仿真与实验结果,对不同材料属性的胶合体在热膨胀匹配设计方面具有一定的指导意义。  相似文献   

13.
14.
Compounds with the formula Cr2-xZr0.5xMg0.5xMo3O12(x = 0.0, 0.3, 0.5, 0.9, 1.3, 1.5, 1.7, 1.9) are synthesized, and the effects of Zr4+ and Mg2+ co-incorporation on the phase transition, thermal expansion, and Raman mode are investigated. It is found that Cr2-xZr0.5xMg0.5xMo3O12 crystallize into monoclinic structures for x 〈 1.3 and orthorhombic structures for x _〉 1.5 at room temperature. The phase transition temperature from a monoclinic to an orthorhombic structure of Cr2Mo3O12 can be reduced by the partial substitution of (ZrMg)6+ for Cr3+. The overall linear thermal expansion coefficient decreases with the increase of the (ZrMg)6+ content in an orthorhombic structure sample. The co-incorporation of Zr4+ and Mg2+ in the lattice results in the occurrence of new Raman modes and the hardening of the symmetric vibrational modes, which are attributed to the MoO4 tetrahedra sharing comers with ZrO6/MgO6 octahedra and to the strengthening of Mo-O bonds due to less electronegativities of Zr4+ and Mg2+ than Cr3+, respectively.  相似文献   

15.
李求杰  袁保合  宋文博  梁二军  袁斌 《中国物理 B》2012,21(4):46501-046501
Materials with the formula Yb2-xAlxMo3O12 (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.1, 1.3, 1.5, and 1.8) were synthesized and their structures, phase transitions, and hygroscopicity investigated using X-ray powder diffraction, Raman spectroscopy, and thermal analysis. It is shown that Yb2-xAlxMo3012 solid solutions crystallize in a single monoclinic phase for 1.7 〈 x 〈 2.0 and in a single orthorhombic phase for 0.0 〈 x 〈 0,4, and exhibit the characteristics of both monoclinic and orthorhombic structures outside these compositional ranges. The monoclinic to orthorhonlbic phase transition temperature of A12Mo3012 can be reduced by partial substitution of A13+ by Yb3+, and the Yb2-zAlxMo3012 (0.0 〈 x 〈 2.0) materials are hydrated at room temperature and contain two kinds of water species. One of these interacts strongly with and hinders the motions of the polyhedra, while the other does not. The partial substitution of A13+ for Yb3+ in Yb2Mo3012 decreases its hygroscopicity, and the linear thermal expansion coefficients after complete removal of water species are measured to be -9.1 x 10-6/K, -5.5 x 10-6/K, 5.74 x 10-6/K, and 9.5 x 10 6/K for Ybl.sAlo.2(MoO4)3, Yb1.6Alo.4(MoO4)3, Ybo.4All.6(Mo04)3, and Ybo.2Al1.8(MoO4)3, respectively.  相似文献   

16.
热收缩化合物——负热膨胀性及成因   总被引:1,自引:0,他引:1  
陈骏  邓金侠  于然波  孙策  胡澎浩  邢献然 《物理》2010,39(10):691-698
文章综述了负热膨胀化合物、负热膨胀机理与应用等方面的进展.负热膨胀是最近十多年来新兴的研究领域,目前已经发现较多化合物具有负热膨胀性能,它们广泛分布在类似ZrW2O8开放式框架结构化合物、磁性合金、反钙钛矿结构的Mn3AX、PbTiO3基铁电化合物、纳米颗粒等领域.在负热膨胀机理研究方面,原子热振动机理研究相对充分,成功地解释了一部分框架式结构化合物负热膨胀机理;然而,较多负热膨胀起源与非振动机理相关,如:物质磁性、铁电性、电子作用、纳米尺寸效应等.文章最后从实际应用角度出发对未来负热膨胀材料研究进行了展望.  相似文献   

17.
Results of thermal expansion prediction from atomic scale for metastable liquid metals are reported herein. Three pure liquid metals Ni, Fe, and Cu together with ternary Ni60Fe20Cu20 alloy are used as models. The pair distribution functions were employed to monitor the atomic structure. This indicates that the simulated systems are ordered in atomic short range and disordered in long range. The thermal expansion coefficient was computed as functions of temperature and atom cutoff radius, which tends to maintain a constant when the cutoff radius increases to approximately 15 Å. In such a case, slightly more than 1000 atoms are required for liquid Ni, Cu, Fe and Ni60Fe20Cu20 alloy, that is, the macroscopic thermal expansion can be predicted from the volume change of such a tiny cell. Furthermore, the expansion behaviors of the three types of atoms in liquid Ni60Fe20Cu20 alloy are revealed by the calculated partial expansion coefficient. This provides a fundamental method to predict the macroscopic thermal expansion from the atomic scale for liquid alloys, especially in the undercooled regime.  相似文献   

18.
刘献省  葛向红  梁二军  张伟风 《中国物理 B》2017,26(11):118101-118101
Low thermal expansion composites are difficult to obtain by using Al with larger positive thermal expansion coefficient(TEC) and the materials with smaller negative TECs. In this investigation, Y_2Mo_3O_(12) with larger negative TEC is used to combine with Al to obtain a low thermal expansion composite with high conductivity. The TEC of Al is reduced by 19%for a ratio Al:Y_2Mo_3O_(12) of 0.3118. When the mass ratio of Al:Y_2Mo_3O_(12) increases to 2.0000, the conductivity of the composite increases so much that a transformation from capacitance to pure resistance appears. The results suggest that Y_2Mo_3O_(12) plays a dominant role in the composite for low content of Al(presenting isolate particles), while the content of Al increases enough to contact each other, the composite presents mainly the property of Al. For the effect of high content Al, it is considered that Al is squeezed out of the cermets during the uniaxial pressure process to form a thin layer on the surface.  相似文献   

19.
以ZrO2固体电解质材料为例,研究氧传感器电解质材料原子振动特点和热膨胀系数及其热稳定性随温度和时间的变化规律,探讨原子非简谐振动的影响。结果表明:原子振动的频率、阻尼系数,在简谐近似下为常数,在考虑到非简谐效应后随温度升高而增大;原子平均位移和热膨胀系数在简谐近似下为零,在考虑到非简谐效应后随温度升高而增大,随的时间的增长而减小;热膨胀性能稳定性温度系数随温度的升高而减小,随时间的增长而增大,即使用时间越长,材料的热膨胀性能稳定性越低;温度越高,热膨胀性能越稳定;非简谐情况下的原子振动的频率、阻尼系数和热膨胀系数与简谐近似下的差值随温度的升高而增大,即温度越高,非简谐效应越显著。  相似文献   

20.
Zhe Wang 《中国物理 B》2021,30(11):116401-116401
Monolayer transition metal dichalcogenides can normally exist in several structural polymorphs with distinct electrical, optical, and catalytic properties. Effective control of the relative stability and transformation of different phases in these materials is thus of critical importance for applications. Using density functional theory calculations, we investigate the effects of low-work-function metal substrates including Ti, Zr, and Hf on the structural, electronic, and catalytic properties of monolayer MoS2 and WS2. The results indicate that such substrates not only convert the energetically stable structure from the 1H phase to the 1T'/1T phase, but also significantly reduce the kinetic barriers of the phase transformation. Furthermore, our calculations also indicate that the 1T' phase of MoS2 with Zr or Hf substrate is a potential catalyst for the hydrogen evolution reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号