首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the radial deformation and the corresponding stresses in a homogeneous annular fin for an isotropic material has been investigated. A numerical technique is proposed to obtain the solution of the transient coupled thermoelasticity in an annular fin cylinder with it’s base suddenly subject to a heat flux of a decayed exponential function of time. The system of fundamental equations is solved by using an implicit finite-difference method. The present method is a second-order accurate in time and space and unconditionally stable. A numerical method is used to calculate the temperature, displacement and the components of stresses with time t and through the radial of the annular fin cylinder. The results indicate that the effect of coupled thermoelasticity on temperature, stresses and displacement is very pronounced. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of coupled thermoelasticity.  相似文献   

2.
The disturbance caused by the application of continuous mechanical source on the free surface of a homogeneous, isotropic elastic half space in the context of the theory of generalized thermoelastic diffusion with one relaxation time parameter is investigated in the Laplace-Fourier transform domain for a two dimensional problem using eigenvalue approach. The integral transforms are inverted by using a numerical technique. The expressions for displacement components, stresses, temperature field, concentration and chemical potential so obtained in the physical domain are computed numerically and illustrated graphically at different times, for copper like material. As a special case the effect of diffusion on various expressions has also been obtained analytically and depicted graphically.  相似文献   

3.
This paper deals with the problem of thermoelastic interactions in a functionally graded isotropic unbounded medium due to the presence of periodically varying heat sources in the context of the linear theory of generalized thermoelasticity without energy dissipation (TEWOED). The governing equations of generalized thermoelasticity without energy dissipation (GN model type II) for a functionally graded materials (FGM) (i.e. material with spatially varying material properties)are established. The governing equations are expressed in Laplace–Fourier double transform domain and solved in that domain. Now, the inversion of the Fourier transform is carried out by using residual calculus, where poles of the integrand is obtained numerically in complex domain by using Laguerre’s method and the inversion of Laplace transform is done numerically using a method based on Fourier series expansion technique. The numerical estimates of the displacement, temperature, stress and strain are obtained for a hypothetical material. The solution to the analogous problem for homogeneous isotropic material is obtained by taking nonhomogeneity parameter suitably. Finally the results obtained are presented graphically to show the effect of nonhomogeneity on displacement, temperature, stress and strain.  相似文献   

4.
Three-dimensional free vibration analysis of functionally graded piezoelectric (FGPM) annular plates resting on Pasternak foundations with different boundary conditions is presented. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the influences of the Winkler and shearing layer elastic coefficients of the foundations on the non-dimensional natural frequencies of functionally graded piezoelectric annular plates. The analytical solution in the thickness direction can be acquired using the state-space method and approximate solution in the radial direction can be obtained using the one-dimensional differential quadrature method. Numerical results are given to demonstrate the convergency and accuracy of the present method. The influences of the material property graded index, circumferential wave number and thickness of the annular plate on the dynamic behavior are also investigated. Since three-dimensional free vibration analysis of FGPM annular plates on elastic foundations has not been implemented before, the new results can be used as benchmark solutions for future researches.  相似文献   

5.
功能梯度材料裂纹尖端动态应力场   总被引:10,自引:2,他引:8  
研究受反平面剪切作用的功能梯度材料动态裂纹问题,通过积分变换-对偶积分方程方法推出了裂纹尖端动态应力场,时间域内的动态应力强度因子由Laplace数值反演获得,研究结果表明功能梯度材料的梯度越大,相应的裂纹问题的动态应力强度因子值越低。  相似文献   

6.
The steady state response of a micropolar thermoelastic medium without energy dissipation possessing cubic symmetry due to a moving load has been studied. Fourier transform has been employed and the transform has been inverted by using a numerical inversion technique. The components of displacement, stress, microrotation and temperature distribution in the physical domain are obtained numerically. The results of normal displacement, normal force stress, tangential couple stress and temperature distribution have been compared for micropolar cubic crystal and micropolar isotropic solid. The numerical results are illustrated graphically for a particular material. Some special cases have also been deduced.  相似文献   

7.
The response of a micropolar thermoelastic medium possessing cubic symmetry with one relaxation time due to time harmonic sources has been investigated. Fourier transform has been employed and the transform has been inverted by using a numerical inversion technique. The components of displacement, stress, microrotation and temperature distribution in the physical domain are obtained numerically. The results of normal displacement, normal force stress, tangential couple stress and temperature distribution have been compared for micropolar cubic crystal and isotropic micropolar solid. The numerical results are illustrated graphically for a particular material. Some special cases have also been deduced.  相似文献   

8.
The boundary element method combined with subtration of Bueckner singular fields are used to obtain weight functions for an internal edge crack in a rotating annular disk. A previously developed, general representation of the weight function is used which leads to integrals that can be evaluated analytically to obtain the stress intensity factor and surface displacements of the crack. The determination of crack tip opening displacements for the strip yield crack is reduced to a non-singular integral which can be evaluated in closed form. The strip yield zone length and crack tip opening displacement are determined for an internal radial crack in a rotating annular disk for a range of crack lengths and rotational speeds.  相似文献   

9.
A solution is provided for the elastodynamic problem of a crack at an arbitrary angle to the graded interfacial zone in bonded media under the action of antiplane shear impact. The interfacial zone is modeled by a nonhomogeneous interlayer with the spatially varying shear modulus and mass density in terms of power functions between the two dissimilar, homogeneous half-planes. Based on the use of Laplace and Fourier integral transforms and the coordinate transformations of basic field variables, formulation of the transient crack problem is reduced to solving a Cauchy-type singular integral equation in the Laplace transform domain. The crack-tip response in the physical domain is recovered via the inverse Laplace transform and the values of dynamic mode III stress intensity factors are obtained as a function of time. A comprehensive parametric study is then presented of the effects of crack obliquity on the overshoot behavior of the transient crack-tip response, by plotting the peak values of the dynamic stress intensity factors versus the crack orientation angle for various material and geometric combinations of the bonded system.  相似文献   

10.
Elastic and plastic limit angular velocities are calculated for rotating disks of variable thickness in power function form. Analytical solution is obtained and used to calculate elastic limit angular velocities of variable thickness rotating annular disks and annular disks with rigid inclusion. An efficient numerical solution procedure is designed and used to obtain the elastic limit angular velocities of variable thickness rotating solid disks. Von Mises yield criterion and its flow rule is used to estimate plastic limit angular velocities. Both linear and nonlinear hardening material behaviors are treated numerically. The results are verified by comparing with those of uniform thickness rotating solid disks available in the literature. Elastic and plastic limit angular velocities are found to increase with the reduction of the disk thickness at the edge as well as the reduction in the disk mass due to the shape of the profile.  相似文献   

11.
This paper deals with a two dimensional problem for a transversely isotropic thick plate having heat source. The upper surface of the plate is stress free with prescribed surface temperature while the lower surface of the plate rests on a rigid foundation and is thermally insulated. The study is carried out in the context of generalized thermoelasticity proposed by Green and Naghdi. The governing equations for displacement and temperature fields are obtained in Laplace–Fourier transform domain by applying Laplace and Fourier transform techniques. The inversion of double transform has been done numerically. The numerical inversion of Laplace transform is done by using a method based on Fourier Series expansion technique. Numerical computations have been done for magnesium (Mg) and the results are presented graphically. The results for an isotropic material (Cu) have been deduced numerically and presented graphically to compare with those of transversely isotropic material (Mg).  相似文献   

12.
An analytical solution is presented for the rotation problem of a two-layer composite elastic cylinder under a plane strain assumption. The external cylinder has variable-thickness formulation, and is made of a heterogeneous orthotropic material. It contains a fiber-reinforced viscoelastic homogeneous isotropic solid core of uniform thickness. The thickness and elastic properties of the external cylinder are taken as power functions of the radial direction. By the boundary and continuity conditions, the radial displacement and stresses for the rotating composite cylinder are determined. The effective moduli and Illyushin’s approximation methods are used to obtain the viscoelastic solution to the problem. The effects of heterogeneity, thickness variation, constitutive, time parameters on the radial displacement, and stresses are investigated.  相似文献   

13.
A. Jodaei 《Meccanica》2014,49(1):215-237
Three-dimensional elasticity solution for static analysis of functionally graded piezoelectric (FGP) annular plates with and without elastic foundations through using state-space based differential quadrature method (SSDQM) at different boundary conditions is presented in this paper. The material properties are assumed to have an exponent-law variation along the thickness. A semi-analytical approach which makes use of state-space method in thickness direction and one-dimensional differential quadrature method in radial direction is utilized to obtain the mechanical behavior of FGP annular plates. The state variables include a combination of electric potential, electric displacement, three mechanical displacement parameters and three stress parameters. Numerical results are given to demonstrate the convergency and accuracy of the present method. Both closed circuit and open circuit effects are studied and the influences of the Winkler and shearing layer elastic coefficients of the foundations, the material property graded index, radius, thickness, mechanical load and boundary conditions on the deflection response of the FGP annular plates are investigated. The new results can be used as a benchmark solutions for future researches.  相似文献   

14.
The present paper is concerned with the investigation of disturbances in'a homogeneous, isotropic elastic medium with generalized thermoelastic diffusion, when a moving source is acting along one of the co-ordinate axis on the boundary of the medium. Eigen value approach is applied to study the disturbance in Laplace-Fourier transform domain for a two dimensional problem. The analytical expressions for displacement components, stresses, temperature field, concentration and chemical potential are obtained in the physical domain by using a numerical technique for the inversion of Laplace transform based on Fourier expansion techniques. These expressions are calculated numerically for a copper like material and depicted graphically. As special cases, the results in generalized thermoelastic and elastic media are obtained. Effect of presence of diffusion is analyzed theoretically and numerically.  相似文献   

15.
The mathematical modeling for the nonlinear vibration analysis of a pre-stretched hyperelastic annular membrane under finite deformations is presented. The membrane is initially fixed along the inner boundary and then subjected to a uniform radial traction along its outer circumference and fixed along the outer boundary. The pre-stretched membrane in then subjected to a transversal harmonic pressure. The membrane material is assumed to be homogeneous, isotropic, and neo-Hookean. First, the solution of the radially stretched membrane is obtained analytically and numerically by the shooting method. The equations of motion of the stretched membrane are then obtained. By analytically and numerically solving the linearized equations of motion, the vibration modes and frequencies of the hyperelastic membrane are obtained, and these normal modes are used, together with the Galerkin method, to obtain reduced order models for the nonlinear dynamic analysis. A parametric analysis of the nonlinear frequency-amplitude relations, resonance curves, bifurcation diagrams and basins of attraction show the influence of the initial stretching ratio and membrane geometry on the type and degree of nonlinearity of the hyperelastic membrane under large amplitude vibrations. To check the accuracy of the reduced order models and the influence of the simplifying hypotheses on the results, the same problem is also analyzed using the finite element method. Excellent agreement is observed.  相似文献   

16.
动态载荷下功能梯度复合材料的圆币形裂纹问题   总被引:4,自引:0,他引:4  
研究了动态载荷下功能梯度材料中的圆币形裂纹问题.假设材料为横观各向同性,并且含有多个垂直于厚度方向的裂纹,材料参数沿轴向(与裂纹面垂直的方向)为变化的,沿该方向将材料划分为许多单层,各单层材料参数为常数,利用Hankel变换祛,在Laplace域内推导出了控制问题的对偶积分方程组.利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子和能量释放率.研究了含两个裂纹的功能梯度接头结构,分析了材料非均匀性参数对应力强度因子和能量释放率的影响.  相似文献   

17.
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier-Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.  相似文献   

18.
Thermoelastic transient response of multilayered annular cylinders of infinite lengths subjected to known temperature at traction-free inner and outer surfaces are considered. A method based on the Laplace transformation and finite difference method has been developed to analyze the thermoelasticity problem. Using the Laplace transform with respect to time, the general solutions of the governing equation are obtained in transform domain. The solution is obtained by using the matrix similarity transformation and inverse Laplace transform. Solutions for the temperature and thermal stress distributions in a transient state were obtained. It was found that the temperature distribution, the displacement and the thermal stresses change slightly as time increases. There is no limit of number of annular layers of the cylinder in the presented computational procedures.  相似文献   

19.
Odeh  Ghassan 《Nonlinear dynamics》2003,33(2):155-164
The behavior of spherical caps under radial dynamic edge loading in theform of step loading of infinite duration in the time domain has beeninvestigated. The aim here is to present a mathematical model of shallowshells of revolution which may undergo snap-through buckling as a resultof the radial displacement of the circular boundary. The snap-throughbuckling under such a loading condition is contrary to intuition and itseems not to have been previously observed. In this search it isobserved that snap-through buckling is also possible under peripheraldynamic loading conditions. The amount of snapping is remarkable whenthe cap has an opening around the apex. A technological application ofthe peripheral type of loading is seen in metal-ceramic compositetransducers achieved by installing a piezoelectric ceramic disk betweentwo metal end caps. The radial motion of the ceramic is converted into aflex-tensional motion in the spherical caps. As a result, a largedisplacement is obtained in the perpendicular direction, which mayresult in snap-through buckling. For the numerical solution of theproblem a computer program, using a linearized finite elementincremental-iterative approach based on updated Lagrangian formulationis developed, and the whole process is accomplished using the Newmarkmethod as the time integration scheme.  相似文献   

20.
We have first obtained that the equations of equilibrium governing the finite radial expansion (contraction) and longitudinal shearing of a circular cylindrical shell become uncoupled for a class of harmonic materials (a class of isotropic homogeneous compressible elastic materials). Next it has been assumed that the dilatation is uniform. Following this the exact solutions of the uncoupled equations of equilibrium have been obtained for a simple harmonic material which is reduced to the Neo-Hookean material for the incompressible case. The deformation is nonhomogeneous in nature. The stresses have been obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号