首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A theoretical study of structural, electronic and optical properties of cubic BaTiO3 and BaZrO3 perovskites is presented, using the full-potential linear augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. In this approach the local density approximation (LDA) is used for the exchange-correlation (XC) potential. Results are given for lattice constant, bulk modulus, its pressure derivative, band structure, density of states, pressure coefficients of energy gaps and refractive indices. The results are compared with previous calculations and experimental data.  相似文献   

2.
A novel nonempirical scaling correction method is developed to tackle the challenge of band gap prediction in density functional theory. For finite systems the scaling correction largely restores the straight-line behavior of electronic energy at fractional electron numbers. The scaling correction can be generally applied to a variety of mainstream density functional approximations, leading to significant improvement in the band gap prediction. In particular, the scaled version of a modified local density approximation predicts band gaps with an accuracy consistent for systems of all sizes, ranging from atoms and molecules to solids. The scaled modified local density approximation thus provides a useful tool to quantitatively characterize the size-dependent effect on the energy gaps of nanostructures.  相似文献   

3.
The pressure dependence of the direct and indirect band gaps in rocksalt silver halides has been studied using the full-potential linearized augmented plane wave method within the generalized gradient approximation for the exchange-correlation potential. It is found that indirect band gaps (L→X and L→Γ) exhibit different responses to application of pressure. Similar trends are found for the indirect band gaps of AgCl and AgBr while the trend in AgI (L→Γ) band gap is different. In all the compounds, the effect of pressure on the direct band gaps (Γ→Γ, X→X and L→L) show qualitatively similar results. The fundamental indirect band gap (L→Γ) pressure coefficients are −4.19 meV (GPa)−1 and −3.81 meV (GPa)−1 for AgCl and AgBr while for AgI (L→X) it is −61.50 meV (GPa)−1. The band gap pressure coefficient as well as the volume deformation potential for the various band gaps of the compounds have also been investigated.  相似文献   

4.
With the local density approximation, the band structares of the short-period (GaAs)1(AlAs)1 and (GaAs)2(AlAs)1 superlattices are calculated by using the first-principle self-consistent pseudopotential method. The results show that the (GaAs)1(AlAs)1 superlattice is an indirect semiconductor, and the lowest conduction band state is at point R in the Brillouin zone; the (GaAs)2(AlAs)1 superlattice is a direct semiconductor and the lowest conduction band state is at point Γ. The squared matrix elements of transition are calculated. The pressure coefficients of energy gaps of the (GaAs)1(AlAs)1 and (GaAs)2(AlAs)1 superlattices are calculated and compared with those obtained by hydrostatic pressure experiments.  相似文献   

5.
This Letter presents a study of the local density of states (LDOS) in photonic quasicrystals. We show that the LDOS of a Penrose-type quasicrystal exhibits small additional band gaps. Among the band gaps, some exhibit a behavior similar to that typical of photonic crystals, while others do not. The development of certain band gaps requires large-size quasicrystals. It is explained by the long-range interactions involved in their formation. Moreover, the frequencies where the band gaps occur are not necessarily explained using single scattering and should therefore involve multiple scattering.  相似文献   

6.
The results of numerical simulations of second harmonic generation in photonic band gap structures with GaAs/AlAs and SiO2/GaAs quarter-wave layers under the action of a femtosecond pulse pump are presented. The transmission and reflection coefficients and the density of the optical modes for these photonic band gaps were calculated.  相似文献   

7.
We have calculated the pressure coefficients of the main gaps in Si, using the Empirical Pseudopotential Method (EPM). We find a trend toward metallization at high hydrostatic pressures. The deformation potential at the top of the valence band for uniaxial stress along the (0, 0, 1) direction is also obtained. All of the calculated pressure coefficients are in good agreement with experiment.  相似文献   

8.
The full-potential linear muffin-tin orbital method (FP-LMTO) within the local density approximation (LDA) is used to calculate the electronic band structures and the total energies of MgTe in its stable (NiAs-B8) and high pressure phases. The latter provide us with the ground state properties such us lattice parameter, bulk modulus and its pressure derivatives. The transition pressure at which this compound undergoes the structural phase transition from the NiAs to CsCl phase is calculated. The energy band gaps and their volume and pressure dependence in the stable NiAs-B8 phase are investigated. The ground state properties, the transition pressure are found to agree with the experimental and other theoretical results. The elastic constants at equilibrium in both NiAs and CsCl structure are also determined.  相似文献   

9.
姜晓庶  闫映策  原世民  米庶  牛振国  梁九卿 《中国物理 B》2010,19(10):107104-107104
We have performed a first-principles investigation for the family of compounds ZnGa2X4 (X = S, Se, Te). The properties of two possible structures, defect chalcopyrite and defect famatinite are both calculated. We reveal that ZnGa2S4 and ZnGa2Se4 have direct band gaps, while ZnGa2Te4 has an indirect band gap. The local density approximation band gaps are found to be very different in two structures, while the lattice parameters and bulk moduli are similar. We extend Cohen’s empirical formula for zinc-blende compounds to this family of compounds. The pressure coefficients are calculated and metallization pressures are discussed. We find that agi remains fairly constant when the group-Ⅵ element X is varied in ZnGa2X4 (Ⅱ-Ⅲ2 -Ⅵ4 ).  相似文献   

10.
Efficient band gap prediction for solids   总被引:1,自引:0,他引:1  
An efficient method for the prediction of fundamental band gaps in solids using density functional theory (DFT) is proposed. Generalizing the Delta self-consistent-field (ΔSCF) method to infinite solids, the Δ-sol method is based on total-energy differences and derived from dielectric screening properties of electrons. Using local and semilocal exchange-correlation functionals (local density and generalized gradient approximations), we demonstrate a 70% reduction of mean absolute errors compared to Kohn-Sham gaps on over 100?compounds with experimental gaps of 0.5-4?eV, at computational costs similar to typical DFT calculations.  相似文献   

11.
采用基于密度泛函理论(DFT)的第一性原理方法对纯CaF2晶体和Mg、Sr掺杂CaF2体系的晶体结构、电学以及光学性质进行了详细的对比研究, 结果表明: 与纯CaF2晶体相比, 掺杂体系的带隙变窄且形成新的态密度峰, 费米面附近出现F与Mg、Sr原子间轨道杂化加强现象. 另外, 掺杂体系仅表现出介电性质, 其对紫外光的吸收强度大大减弱, 而Ca7SrF16掺杂体系在25.44 eV处产生新的小吸收峰. CaF2晶体掺入Mg、Sr原子后, 体系在紫外光区的消光系数减小且对紫外光的透过率增大. 此外, 掺杂体系的反射谱峰和损失函数峰均发生红移且峰值显著降低.  相似文献   

12.
采用基于密度泛函理论(DFT)的第一性原理方法对纯CaF2晶体和Mg、Sr掺杂CaF2体系的晶体结构、电学以及光学性质进行了详细的对比研究, 结果表明: 与纯CaF2晶体相比, 掺杂体系的带隙变窄且形成新的态密度峰, 费米面附近出现F与Mg、Sr原子间轨道杂化加强现象. 另外, 掺杂体系仅表现出介电性质, 其对紫外光的吸收强度大大减弱, 而Ca7SrF16掺杂体系在25.44 eV处产生新的小吸收峰. CaF2晶体掺入Mg、Sr原子后, 体系在紫外光区的消光系数减小且对紫外光的透过率增大. 此外, 掺杂体系的反射谱峰和损失函数峰均发生红移且峰值显著降低.  相似文献   

13.
The main objective of our work is the study of structural, optoelectronic and thermodynamic properties of InAsxP1-x alloys in the zinc-blende structure using the full potential linearized augmented plane wave method (FP-LAPW) based on density functional theory (DFT). Different exchange correlation potentials were used, as well as the local density approximation (LDA) and the generalized gradient approximation (GGA) parameterized by Perdew–Burke–Ernzerhof (PBE-GGA) and PBE sol-GGA of Perdew, to estimate structural properties such as lattice parameters, the bulk modulus and its first pressure derivative. For electronic properties, the Tran-Blaha modified Becke–Johnson potential (TB-mBJ) was used for density of states (DOS) and band structure calculations. The results show that the compounds of interest are semiconductors with direct band gaps for the full range of x compositions and that the optical band gap decreases from 1.58 to 0.41 eV with increasing As concentrations. The obtained results show a good agreement with experimental and theoretical data found in the literature. In addition, we have investigated the dielectric function as well as the refractive index and the reflectivity. The electronic and optical properties were studied under hydrostatic pressure (P = 0, 5, 10, 15, 20, and 25 GPa), and it was found that the band gaps of the binary compounds change from a direct to an indirect harmonic Debye model was used, which takes into account the effect of pressure P and temperature T on the lattice parameter, to explore the heat capacity, the Debye temperature and the entropy under pressures ranging from 0 to 20 GPa and temperatures ranging from 0 to 1200 K.  相似文献   

14.
《Physics letters. A》2020,384(21):126420
This article presents an inertant metamaterial plate with two-degree-of-freedom (TDOF) local resonance. It is theoretically investigated with dispersion relation, effective density, and group velocity, and phase velocity to show the unique acoustic performance. Results show that the metamaterial plate can generate two tunable band gaps with a single mass attached by tuning the distance of springs to the centroid of mass due to the extra rotation of the mass. Simultaneously, the band gaps can also be tuned to the lower frequency range by exploiting the inerter. Effective mass density shows negative within the band gaps, and is also tuned by the attached spring-mass and inerter. Finally, within specific frequency ranges, the group velocity is negative which manifests the metamaterial plate behaves abnormal dispersion.  相似文献   

15.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

16.
The results of first-principles theoretical study of the structural, electronic and optical properties of SrCl2 in its cubic structure, have been performed using the full-potential linear augmented plane-wave method plus local orbitals (FP-APW+lo) as implemented in the WIEN2k code. In this approach both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for the exchange-correlation (XC) potential. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. We performed these calculations with and without spin-orbit interactions. Including spin-orbit coupling cause to lifts the triple degeneracy at Γ point and a double degeneracy at X point. Results are given for structural properties. The pressure dependence of elastic constants and band gaps are investigated. The dielectric function, reflectivity spectra and refractive index are calculated up to 30 eV. Also we calculated the pressure and volume dependence of the static optical dielectric constant.  相似文献   

17.
应用复平面波展开法对一维光子晶体的光子带隙, 透射特性进行了分析. 通过对色散关系和透射系数的数值计算发现一维光子晶体周期结构个数以及折射率分布对光学晶体透射系数以及光子带隙的影响. 对于含有整数个周期结构的光子晶体有共振点出现在光子帯隙外的频率范围内, 共振点的个数比周期结构个数少1. 带隙倾斜斜率等于折射率的比值. 折射率比值越大, 带隙的范围越大.  相似文献   

18.
The effect of pressure on the structural and electronic properties of lithium, sodium, potassium, and ammonium perchlorates have been studied in terms of the density functional theory with allowance for the Van der Waals dispersion interaction. The pressure dependences of the geometric parameters, the band gaps, the densities of states, the charge distributions, and the atomic charges are calculated. The compressibilities of the perchlorates are found to be anisotropic, which is due to the differences of the lattice parameters and the nature of interatomic bonds. Ammonium cation is rotated under pressure around axis b at an angle of ~9°. The band gaps of the perchlorates are ~4.5–4.7 eV and increase with pressure.  相似文献   

19.
We have investigated the chemical trends of the III–V semiconductor InP in the zinc-blende structure under hydrostatic pressure by means of empirical pseudopotential calculations. The pressure coefficients of the main band gaps (at Γ, X, and L) are given and compared with the available experimental data. In agreement with experiments, we find that the transverse effective charge decreases with increasing pressure which indicates the increased covalent bonding in the studied material.  相似文献   

20.
In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of CdX and ZnX (X = S, Se, Te) based II–VI chalcogenides. First principles calculations using the local density approximation (LDA) and the related generalized gradient approximation (GGA) lead to a severe underestimate of the band gap. The proposed model uses various exchange–correlation potentials (LSDA, GGA and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using modified Becke–Johnson (MBJLDA) density potential leads to a better agreement with experimental data for band gaps of Cd and Zn based semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号