首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.E Demuth 《Surface science》1977,69(2):365-384
Ultraviolet photoelectron spectroscopy, temperature programmed thermal desorption and low-energy electron diffraction have been used to study the interaction of acetylene with a clean Ni(111) surface, with a Ni(111) surface having co-adsorbed oxygen and with an epitaxially grown NiO(111) surface produced by room temperature oxidation ofNi(111). The adsorption of a (2 × 2) overiayer of π-bonded acetylene or oxygen on the Ni(111) surface markedly alters the subsequent interaction and reaction of the surface with incident acetylene. We find that in the presence of either a (2 × 2) overiayer of oxygen or π-bonded acetylene, a new more strongly bound hydrocarbon phase forms at room temperature. We identify this new phase from its ionization levels as a CH species, and for saturation coverages we find approximately twice as many of these species as the number of π-bonded acetylene molecules in the (2 × 2) structure. Preadsorption of oxygen limits the adsorption of π-bonded acetylene but does not affect the subsequent formation of this CH species. Exposure of acetylene to NiO at room temperature produces only CH species. Based upon these results we propose idealized models for the bonding geometry of π-bonded acetylene and CH species on the Ni(111) surface. The conditions for the formation of CH species and the significance of CH species to surface reactions on Ni are also discussed.  相似文献   

2.
3.
High resolution electron energy-loss measurements of normal and deuterated acetylene chemisorbed on Ni(111) have been obtained. Observed vibrational modes are identified using the frequency shifts for the deuterated species and comparisons to the free molecule and a di-cobalt compound of acetylene. These vibrational frequencies indicate that chemisorbed acetylene is strongly rehybridized having a state of hybridization between ~sp2.5 and sp3. Consideration of the types of modes observed, their assignments and the surface selection rule suggests a molecular orientation with the C-C bond axis slightly skewed relative to the surface and with the plane of the distorted molecule normal to the surface. A bonding geometry is proposed which has the carbon atoms residing above two adjacent 3 fold hollow sites of the Ni surface. This molecular geometry differs from that deduced previously by electron energy-loss spectroscopy for molecularly adsorbed acetylene on Pt(111).  相似文献   

4.
An analysis has been made of on- and off-specular electron energy loss spectra (EELS) from C2H4 and C2D4 adsorbed on a clean Ni(110) and also a carbided Ni(110) surface. The carbided surface was prepared by heating the clean Ni surface in ethylene to 573 K or above. EELS spectra were obtained using a Leybold-Heraeus spectrometer at a beam energy of 3.0 eV and with a resolution of ca. 6.5 meV (ca. 50 cm?1).The loss spectrum from ethylene at low temperatures (110 K) showed principal features at 3000 (w), 1468 (w), 1162 (s), 879 (w) and 403 cm?1 (s) (C2D4 adsorption) and 2186 (w), 1258 (ms), 944 (ms), 645 (w) and 400 cm?1 (s) (C2D4 adsorption). The overall pattern of wavenumbers and intensifies of the C2H4/C2D4 loss peaks is very similar in form (although systematically different in positions) to those previously observed on Ni(111) (ref.1) and Pt(111) (ref.2) surfaces at low temperatures. Like these earlier spectra,the EELS results for C2H4/C2D4 adsorbed on clean Ni(110) can be well interpreted in terms of a MCH2CH2M/MCD2CD2M species (M = metal) with the CC bond parallel to the surface.After adsorption on the carbided Ni(110) surfaces at 125 K,the main loss features occur at 3065 (m), 2992 (m), 1524 (ms), 1250 (s), 895 (s), and 314 cm?1 (vs) (C2H4 adsorption) and 2339 (m), 2242 (m), 1395 (s), 968 (s), 661 (m) and 314 cm?1 (vs). With the exceptions of reduced intensities of the bands at 895 cm?1 (C2H4) and 661 cm?1 (C2D4) this pattern of losses - particularly the 1550-1200 cm?1 features which can be assigned to coupled νCC and δCH2/δCD2 modes - is well related to similar results on Cu(100) (ref.3) and Pd(111) (ref.4) which have been interpreted convincingly in terms of the presence of π-bonded species, (C2H4)M or (C2D4)M on the surface. This structural assignment is supported by comparison with the vibrational spectra of Zeise's salt, K[PtCl3(C2H4)].H2O (refs.5&6).Spectral changes occur on warming C2H4 on the clean Ni(110) surface with a growth of a feature near 895 cm?1 at 200 K. At 300 K a rather poorly-defined spectrum occurs, which differs substantially from those found on (111) surfaces of Pt (ref.2), Rh (ref.7) or Pd (ref.8) at room temperature. These latter have been attributed to the ethylidyne, CH3.CM3, surface species (ref.9). For adsorption on Ni(110) there is clearly a mixture of species at room temperature.The analysis of the vibrational spectra of selected metal-cluster compounds of known structure with selected hydrocarbon ligands has helped substantially to assign the spectra of surface species in terms of bonding structures of the adsorbed species, as in the cases of the identification of (C2H4)M π-adsorbed (refs.5&6) and the ethylidyne CH3.CM3 species (ref.9). We have recently analysed the infrared and Raman spectra of the cluster compound (C2H2)Os3(CO)10 and its deuterium-containing analogue. The infrared frequency and intensity pattern for the A′ modes (CS symmetry) of the two isotopomers bears a remarkable resemblance to EELS spectra previously obtained at low temperature for C2H2/C2D2 adsorbed on Pt(111) (ref.2) and (after taking into account systematic frequency shifts) for Pd(111) (ref.4). There is good evidence for believing that the structure of the hydrocarbon ligand interacting with the osmium complex takes the form
where the arrow denotes a π-bond to the third metal atom. This strongly confirms the structure for the low-temperature acetylene species on Pt(111) as proposed by Ibach and Lehwald (ref.2).Finally the room-temperature spectra for ethylene adsorbed on finely-divided silica-supported Pt and Pd catalysts have previously been interpreted in terms of the presence of MCH2CH2M (ref.10) and π-bonded (C2H4)M species (ref.11). However comparisons with the more recent EELS spectra from ethylene on Pt(111) at room temperature (ref.2) now leads to a reassignment of the 2880 cm?1 band, on Pt, previously assigned to MCH2CH2M, together with a new, related,band at 1340 cm?1 (ref.12), to the ethylidyne species CH3CPt3 found on the single crystal surface.More detailed analyses of the spectra reported here will be published later. Acknowledgement is given to substantial assistance for this programme of research from the Science and Engineering Research Council.  相似文献   

5.
Using a simple tight-binding scheme to describe the nickel d states and the oxygen p states, we calculate the positions and the vibration frequencies of chemisorbed oxygen atoms on nickel (110) surfaces. The comparison between our results and the high resolution electron loss measurements suggests a longbridge chemisorption site at low and high oxygen coverages on the nickel surface.  相似文献   

6.
Filtered He II (hv = 40.8 eV) photoemission spectra for acetylene and ethylene molecularly chemisorbed at T ~ 100 K on Ni(111), Ni(110), Pd(111) and Pt(111) have been obtained. The resulting vertical ionization potentials are presented and used within the framework of an approximate model to obtain information of the geometric structure of these molecules. Two initial state effects are discussed which are found to be important in deducing the molecular structures. These include an initial state shift of the lowest lying carbon-2s derived orbital and a metal atom induced shift of the σCC valence orbital for strongly distorted species. The magnitudes of both effects are estimated — the latter using Hartree — Fock LCAO calculations of Be interacting with acetylene or ethylene. The deduced geometries of chemisorbed ethylene are found to differ only slightly from those determined without considering these effects, but for acetylene two classes of structures are found. One class of structures is weakly distorted while the other is strongly distorted (~sp2.5 hybridization). The latter structure is consistent with recent vibrational loss studies of chemisorbed acetylene on Ni(111) and Pt(111). In contrast to chemisorbed acetylene, chemisorbed ethylene on Ni shows relatively weak distortions. More subtle crystallographic and structural effects for acetylene and ethylene on (111), (100) and (110) Ni surfaces are also discussed.  相似文献   

7.
Experiments with UPS, metastable noble gas deexcitation spectroscopy (MDS) and thermal desorption demonstrated that C2H2 adsorbed on Pd(111) at 140 K undergoes cyclotrimerisation to C6H6 after higher (? 100 L) exposures. If the surface is intermediately warmed up to 300 K, the low temperature state of adsorbed acetylene transforms irreversibly into another species which is unreactive. The surface species formed by reaction was identified by comparison with the electron spectroscopic data of C6H6 adsorbed from the gas phase as well as with those of free C6H6. The molecules are only weaky held on the surface and start to desorb already at about 150 K.  相似文献   

8.
The Auger spectra of carbon monoxide adsorbed on Pt(111) and Cu(111) are compared. The characteristic features now regarded as a fingerprint of this adsorbed species are observed, even for the weakly adsorbed CO on copper which gives complex X-ray photoelectron spectra. No coverage dependence of the spectra was observed on either substrate. The C lsVV spectrum of CO/Cu(111) is dominated by transitions involving the “screening” electron in the 2π orbital.  相似文献   

9.
Electron energy loss spectra of a Pd(110) clean surface have been measured at primary energies of 40–100 eV. The observed peaks are at the loss energies of ∼ 3, 4.3, 7.5, 11.5, 16, 21.3, 26.5 and 33.8 eV. The 7.5, 26.5, and 33.8 eV peaks are attributed mainly to the bulk plasmon excitations associated with 5s electrons, coupled 5s and a limited number of 4d electrons, and total (4d+5s) electrons, respectively. The rest of the peaks are ascribed mainly to one-electron excitations.  相似文献   

10.
Ultraviolet photoemission spectroscopy using hv = 21.2 eV and filtered 40.8 eV radiation as well as temperature programmed thermal desorption spectroscopy are used to investigate the chemical reaction of acetylene with Ni(100) and Ni(110) surfaces at room temperature. Striking crystallographic effects and several coexisting phases are observed and found to be coverage and temperature dependent. A methodology is described and used to predict the relative energy levels for a variety of adsorbed hydrocarbon fragments on Ni surfaces. Such levels together with the thermal desorption spectra are used to identify the observed species. In particular, CH and CCH species are isolated on Ni(100) and Ni(110) surfaces, respectively, via low temperature adsorption and subsequent pulsed sample warming experiments. The room temperature adsorption phases are deduced using these ionization levels together with those of chemisorbcd acetylene, atomic hydrogen and carbon. At room temperature on Ni(100), H, C, CH and C2H2 species form together below 2 L exposure while CH species form thereafter, up to a saturation exposure of ~10 L. On Ni(110), H and CCH species form below 1.5 L exposure followed by the formation of CH2 and likely CH species. The relative stabilities of these species at elevated temperatures is: C2H2 < CCH ? CH < CH2. A model for the bonding of acetylene and its reaction to form CCH species on Ni(110) is proposed.  相似文献   

11.
Surfaces ofNa(110) are grown, investigated and oxidised to give Na2O(111) surfaces. LEED spectra are taken for these surfaces and compared with theory to determine the surface composition of sodium oxide: the surface terminates the crystal in an integral number of electrically neutral NaONa sandwiches, with a bulk-like inter layer spacing. The effective Debye temperature for the Na(110) surface was found to be 107 K.  相似文献   

12.
The characteristic energy loss and Auger electron spectra of clean GaP (110) have been measured with a four grid retarding field analyser. A peak in the loss spectrum has been found at 11.2 eV which is probably due to a surface plasma loss. The remaining structure has been assigned to direct interband transitions, to single and double bulk plasma losses and to d-band transitions by analogy with previous optical and electron transmission studies. Suggestions are made as to the origin of the peaks in the Auger spectrum and changes in the spectrum in the presence of oxygen are discussed.  相似文献   

13.
The adsorption of ammonia on the Ni(110) and Ni(111) surfaces has been studied with high resolution (≤ 65 cm?1) electron energy loss spectroscopy (EELS) combined with thermal desorption spectroscopy. The EELS spectra of the initial chemisorbed layer or α state on each surface are very different. Ammonia chemisorbed on the Ni(110) surface exhibits a strong Ni-N stretching mode at 570 cm?1 which is absent on the Ni(111) surface. The Ammonia adsorption site appears to be different on the Ni(110) and Ni(111) surfaces. We suggest that the absence of the M-N stretching mode on the Ni(111) surface is a general characteristic of the ammonia adsorption site on the (111) surfaces of fcc Group VIII metals.  相似文献   

14.
The electronic density of clean and Ga-chemisorbed diamond (111) surfaces have been calculated using a cluster Bethe-lattice method. The results have been compared with those obtained for Ge (111) surfaces. A comparatively flat dangling bond band appears in both the clean and chemisorbed diamond surfaces in contrast to the other homopolar material surfaces. The metal-induced states appear on the top of the valence band as well as on the bottom of the conduction band.  相似文献   

15.
High-resolution electron energy loss spectra of hydrogen-covered Ni(110) surfaces both at 100 and 300 K are presented. The adsorbed sites of hydrogen atoms are discussed.High-resolution electron energy loss spectra of hydrogen covered Ni(110) surfaces have been studied. Tentative models for the adsorbed sites of hydrogen atoms are as follows: (1) For the (2 × 1)-H surface, hydrogen is adsorbed in the three-coordinated sites of the rudimentary (111) face of the unreconstructed Ni(110) substrate. (2) For the low-temperature (1 × 2)-H surface, hydrogen is adsorbed in the three-coordinated sites and, probably, in the two-fold hollow sites of the distorted Ni(110) substrate. (3) For the room-temperature (1 × 2)-H surface, hydrogen is disorderedly adsorbed in the three-coordinated, two-fold hollow and short-bridge sites and, possibly, in the octahedral sites of the distorted Ni(110) substrate. Some of the unresolved problems in the above assignments are summarized: (1) Strictly, the three-coordinated sites above are somewhat different from those discussed in the molecular-beam diffraction study [5]. (2) For the low-temperature (1 × 2)-H surface, the loss associated with hydrogen in the two-fold hollow sites is apparently not observed. (3) Intensity changes of the three losses for the room-temperature (1 × 2)-H surface with increasing hydrogen pressure (Fig. 2) are not well understood.  相似文献   

16.
We present experimental data on the temperature dependence of photo-hole decay obtained by Angle Resolved Photoemission (ARPES) measurements from 4d derived Quantum Well States (QWS) on Ag(111) monolayer films deposited on Pd(111), Ni(111), Mo(110) and Cu(100). We have found a significant increase of the Ag 4d electron–phonon (e-ph) coupling strength with respect to the bulk values. The increase is attributed to different mechanisms that are associated with the interaction of the Ag film with under laying substrate. It is proposed that the main channels that contribute to the increased e-ph coupling originate from the inter-band transitions that involve bulk states of the substrates.  相似文献   

17.
18.
Effect of Pd deposition on a clean Si(111) surface was studied by ELS and AES methods for submonolayer [1 ML = 7.8 × 1014atomscm-2forSi(111)] to several tens of monolayers. ELS spectra showed that the electronic nature of Pd-Si bonding for ? 1 ML of Pd coverage is different from Pd2Si formed for ? 3 ML. Namely, it was shown that some critical thickness for Pd on Si(111) exist for inducing interfacial intermixing reaction at room temperature.  相似文献   

19.
The chemisorption of C2H4 and C2D4 on Pd(111) at 150 K has been studied by high resolution electron energy loss spectroscopy. Analysis of the vibrational spectra indicates that (i) C2H4 is more weakly bound on Pd(111) than on Ni(111) and Pt(111) and (ii) softened and broadened CH stretching frequencies suggest hydrogen bond-like interactions between the molecule and the metal surface.  相似文献   

20.
We have performed a study of empty electronic bulk and surface states on the three low indexed copper surfaces employing momentum resolved inverse photoemission. The bulk electronic features may be well understood in the frame work of the bulk direct transition model using state of the art band structure calculations. Surface states of both, the crystal derived and the image potential induced type have been identified and were found to agree with previous work. Several radiative transitions into unoccupied bands were also investigated at elevated temperatures. Characteristic temperatures of an exponential attenuation law are distinctly different between surface and bulk transitions. However, no systematic behaviour of bulk transitions at different points of the Brillouin zone could be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号