首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Elastin is an extracellular-matrix protein that imparts elasticity to tissues. We have used solid-state NMR to determine a number of distances and torsion angles in an elastin-mimetic peptide, (VPGVG)3, to understand the structural basis of elasticity. C-H and C-N distances between the V6 carbonyl and the V9 amide segment were measured using 13C-15N and 13C-1H rotational-echo double-resonance experiments. The results indicate the coexistence of two types of intramolecular distances: a third of the molecules have short C-H and C-N distances of 3.3 +/- 0.2 and 4.3 +/- 0.2 A, respectively, while the rest have longer distances of about 7 A. Complementing the distance constraints, we measured the (phi, psi ) torsion angles of the central pentameric unit using dipolar correlation NMR. The -angles of P7 and G8 are predominantly ~150, thus restricting the majority of the peptide to be extended. Combining all torsion angles measured for the five residues, the G8 C chemical shift, and the V6-V9 distances, we obtained a bimodal structure distribution for the PG residues in VPGVG. The minor form is a compact structure with a V6-V9 C=O-HN hydrogen bond and can be either a type II -turn or a previously unidentified turn with Pro (phi = -70, psi= 20 +/- 20) and Gly ( phi= -100 +/- 20, psi = -20 +/- 20). The major form is an extended and distorted beta-strand without a V6-V9 hydrogen bond and differs from the ideal parallel and antiparallel beta-strands. The other three residues in the VPGVG unit mainly adopt antiparallel beta-sheet torsion angles. Since (VPGVG)3 has the same 13C and 15N isotropic and anisotropic chemical shifts as the elastin-mimetic protein (VPGXG)n (X = V and K, n = 195), the observed conformational distribution around Pro and Gly sheds light on the molecular mechanism of elastin elasticity.  相似文献   

2.
By using Tb3+ as a luminescent probe, we demonstrate that the phosphorylation state of a 14-residue peptide fragment of alpha-synuclein, a protein implicated in Parkinson's Disease, dramatically affects the metal ion affinity of the peptide. Whereas the unphosphorylated peptide and its phosphoserine analogue show weak Tb3+ binding, its phosphotyrosine analogue shows tight 1:1 binding as well as 2:1 and 3:1 Tb:peptide adducts. Our data suggest that the phosphorylated amino acid must be appropriately positioned among additional ligating residues to establish this phosphorylation-dependent metal binding.  相似文献   

3.
The three-dimensional structure of a unique polymorph of the anticancer drug paclitaxel (Taxol) is established using solid state NMR (SSNMR) tensor ((13)C & (15)N) and heteronuclear correlation ((1)H-(13)C) data. The polymorph has two molecules per asymmetric unit (Z' = 2) and is thus the first conformational characterization with Z' > 1 established solely by SSNMR. Experimental data are correlated with structure through a series of computational models that extensively sample all conformations. For each computational model, corresponding tensor values are computed to supply comparisons with experimental information which, in turn, establishes paclitaxel's structure. Heteronuclear correlation data at thirteen key positions provide shift assignments to the asymmetric unit for each comparison. The two distinct molecules of the asymmetric unit possess nearly identical baccatin III moieties with matching conformations of the C10 acetyl moiety and, specifically, the torsion angle formed by C30-O-C10-C9. Additionally, both are found to exhibit an extended conformation of the phenylisoserine sidechain at C13 with notable differences in the dihedral angles centered around the rotation axes of O-C13, C2'-C1' and C3'-C2'.  相似文献   

4.
The aggregation and packing of a membrane-disruptive beta-hairpin antimicrobial peptide, protegrin-1 (PG-1), in the solid state are investigated to understand its oligomerization and hydrogen-bonding propensity. Incubation of PG-1 in phosphate buffer saline produced well-ordered nanometer-scale aggregates, as indicated by 13C and 15N NMR line widths, chemical shifts, and electron microscopy. Two-dimensional 13C and 1H spin diffusion experiments using C-terminus strand and N-terminus strand labeled peptides indicate that the beta-hairpin molecules in these ordered aggregates are oriented parallel to each other with like strands lining the intermolecular interface. In comparison, disordered and lyophilized peptide samples are randomly packed with both parallel and antiparallel alignments. The PG-1 aggregates show significant immobilization of the Phe ring near the beta-turn, further supporting the structural ordering. The intermolecular packing of PG-1 found in the solid state is consistent with its oligomerization in lipid bilayers. This solid-state aggregation approach may be useful for determining the quaternary structure of peptides in general and for gaining insights into the oligomerization of antimicrobial peptides in lipid bilayers in particular.  相似文献   

5.
6.
Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur.  相似文献   

7.
Li(+) and Ca(2+) binding to the carbonyl oxygen sites of a model peptide system has been studied by (17)O solid-state NMR spectroscopy. (17)O chemical shift (CS) and quadrupole coupling (QC) tensors are determined in four Gly-(Gly-(17)O)-Gly polymorphs by a combination of stationary and fast magic-angle spinning (MAS) methods at high magnetic field, 19.6 T. In the crystal lattice, the carbonyl oxygen of the central glycyl residue in two gly-gly-gly polymorphs form intermolecular hydrogen bonds with amides, whereas the corresponding carbonyl oxygens of the other two polymorphs form interactions with Li(+) and Ca(2+) ions. This permits a comparison of perturbations on (17)O NMR properties by ion binding and intermolecular hydrogen bonding. High quality spectra are augmented by density functional theory (DFT) calculations on large molecular clusters to gain additional theoretical insights and to aid in the spectral simulations. Ion binding significantly decreases the two (17)O chemical shift tensor components in the peptide plane, delta(11) and delta(22), and, thus, a substantial change in the isotropic chemical shift. In addition, quadrupole coupling constants are decreased by up to 1 MHz. The effects of ion binding are found to be almost an order of magnitude greater than those induced by hydrogen bonding.  相似文献   

8.
The investigation of 1H-1H spin-diffusion build-up curves using a rate matrix analysis approach shows that high-resolution magic angle spinning NMR of protons, applied to powdered organic compounds, provides a method to probe crystalline arrangements. The comparison between experimental 1H data and simulation is shown to depend strongly on the parameters of the crystal structure, for example on the unit cell parameters or the orientation of the molecule in the unit cell, and those parameters are experimentally determined for a model organic compound.  相似文献   

9.
A new spinning-angle-encoding spin-echo solid-state NMR approach is used to accurately determine the dipolar coupling corresponding to a C-C distance over 4 ? in a fully labelled dipeptide. The dipolar coupling dependent spin-echo modulation was recorded off magic angle, switching back to the magic angle for the acquisition of the free-induction decay, so as to obtain optimum sensitivity. The retention of both ideal resolution and long-range distance sensitivity was achieved by redesigning a 600 MHz HX MAS NMR probe to provide fast angle switching during the NMR experiment: for 1.8 mm rotors, angle changes of up to ~5° in ~10 ms were achieved at 12 kHz MAS. A new experimental design that combines a reference and a dipolar-modulated experiment and a master-curve approach to data interpretation is presented.  相似文献   

10.
Silicon-substituted hydroxyapatite (Si-HAp) has shown promising properties such as high-bone remodeling around implants. So far, the techniques used for the structural characterization of the Si-HAp have given indirect evidence of the presence of silicon inside the structure (by X-ray and neutron diffraction). In this paper, we focus on Si-HAp derivatives obtained by a precipitation method (widely described in the literature). We demonstrate here by solid-state NMR spectroscopy that only a fraction of the silicon atoms are incorporated into the HAp lattice in the form of Q(0) (SiO(4) (4-)) species, for 4.6 wt% Si-HAp. A large amount of silicate units are located outside the HAp structure and correspond to silica-gel units. All results were established through (29)Si MAS, (1)H -->(29)Si CP MAS and T(1)rho((1)H) edited (1)H -->(29)Si CP MAS experiments. This last pulse scheme acted as a powerful editing sequence, leading to unambiguous spectroscopic conclusions, concerning the location of the SiO(4) (4-) moieties.  相似文献   

11.
12.
Several approaches for utilizing dipolar recoupling solid-state NMR (ssNMR) techniques to determine local structure at high resolution in peptides and proteins have been developed. However, many of these techniques measure only one torsion angle or are accurate for only certain classes of secondary structure. Additionally, the efficiency with which these dipolar recoupling experiments suppress the deleterious effects of chemical shift anisotropy (CSA) at high magnetic field strengths varies. Dipolar recoupling with a windowless sequence (DRAWS) has proven to be an effective pulse sequence for exciting double-quantum (DQ) coherences between adjacent carbonyl carbons along the peptide backbone. By allowing this DQ coherence to evolve, it is possible to measure the relative orientations of the CSA tensors and subsequently use this information to determine the Ramachandran torsion angles phi and psi. Here, we explore the accuracies of the assumptions made in interpreting DQ-DRAWS data and demonstrate their fidelity in measuring torsion angles corresponding to a variety of secondary structures irrespective of hydrogen-bonding patterns. It is shown how a simple choice of isotopic labels and experimental conditions allows accurate measurement of backbone secondary structures without any prior knowledge. This approach is considerably more sensitive for determining structure in helices and has comparable accuracy for beta-sheet and extended conformations relative to other methods. We also illustrate the ability of DQ-DRAWS to distinguish between structures in heterogeneous samples.  相似文献   

13.
Using 103Rh[1H] cross-polarization (CP) methods, we have obtained solid-state 103Rh NMR spectra for diamagnetic Rh(III) compounds. The isotropic chemical shift and chemical shift anisotropy (CSA) are reported for a crystalline form of the dihydroxy-bridged Rh(III) dimer and for a salt of the oxo-centered acetate-bridged Rh(III) trimer, from analysis of conventional CP/MAS spectra. Comparison of the CP kinetics of the dimer with new crystal structure data suggests a strategy for predicting 103Rh CP/MAS properties in solids.  相似文献   

14.
The insertion of charged amino acid residues into the hydrophobic part of lipid bilayers is energetically unfavorable yet found in many cationic membrane peptides and protein domains. To understand the mechanism of this translocation, we measured the (13)C-(31)P distances for an Arg-rich beta-hairpin antimicrobial peptide, PG-1, in the lipid membrane using solid-state NMR. Four residues, including two Arg's, scattered through the peptide were chosen for the distance measurements. Surprisingly, all residues show short distances to the lipid (31)P: 4.0-6.5 A in anionic POPE/POPG membranes and 6.5-8.0 A in zwitterionic POPC membranes. The shortest distance of 4.0 A, found for a guanidinium Czeta at the beta-turn, suggests N-H...O-P hydrogen bond formation. Torsion angle measurements of the two Arg's quantitatively confirm that the peptide adopts a beta-hairpin conformation in the lipid bilayer, and gel-phase 1H spin diffusion from water to the peptide indicates that PG-1 remains transmembrane in the gel phase of the membrane. For this transmembrane beta-hairpin peptide to have short (13)C-(31)P distances for multiple residues in the molecule, some phosphate groups must be embedded in the hydrophobic part of the membrane, with the local (31)P plane parallel to the beta-strand. This provides direct evidence for toroidal pores, where some lipid molecules change their orientation to merge the two monolayers. We propose that the driving force for this toroidal pore formation is guanidinium-phosphate complexation, where the cationic Arg residues drag the anionic phosphate groups along as they insert into the hydrophobic part of the membrane. This phosphate-mediated translocation of guanidinium ions may underlie the activity of other Arg-rich antimocrobial peptides and may be common among cationic membrane proteins.  相似文献   

15.
Membrane binding of a doubly lipid modified heptapeptide from the C-terminus of the human N-ras protein was studied by Fourier transform infrared, solid-state NMR, and neutron diffraction spectroscopy. The 16:0 peptide chains insert well into the 1,2-dimyristoyl-sn-glycero-3-phosphocholine phospholipid matrix. This is indicated by a common main phase transition temperature of 21.5 degrees C for both the lipid and peptide chains as revealed by FTIR measurements. Further, (2)H NMR reveals that peptide and lipid chains have approximately the same chain length in the liquid crystalline state. This is achieved by a much lower order parameter of the 16:0 peptide chains compared to the 14:0 phospholipid chains. Finally, proton/deuterium contrast variation of neutron diffraction experiments indicates that peptide chains are localized in the membrane interior analogous to the phospholipid chains. In agreement with this model of peptide chain insertion, the peptide part is localized at the lipid-water interface of the membrane. This is revealed by (1)H nuclear Overhauser enhancement spectra recorded under magic angle spinning conditions. Quantitative cross-peak analysis allows the examination of the average location of the peptide backbone and side chains with respect to the membrane. While the backbone shows the strongest cross-relaxation rates with the phospholipid glycerol, the hydrophobic side chains of the peptide insert deeper into the membrane interior. This is supported by neutron diffraction experiments that reveal a peptide distribution in the lipid-water interface of the membrane. Concurring with these experimental findings, the amide protons of the peptide show strong water exchange as seen in NMR and FTIR measurements. No indications for a hydrogen-bonded secondary structure of the peptide backbone are found. Therefore, membrane binding of the C-terminus of the N-ras protein is mainly due to lipid chain insertion but also supported by interactions between hydrophobic side chains and the lipid membrane. The peptide assumes a mobile and disordered conformation in the membrane. Since the C-terminus of the soluble part of the ras protein is also disordered, we hypothesize that our model for membrane binding of the ras peptide realistically describes the membrane binding of the lipidated C-terminus of the active ras protein.  相似文献   

16.
We present the first solid-state NMR experiments developed using optimal control theory. Taking heteronuclear dipolar recoupling in magic-angle-spinning NMR as an example, it proves possible to significantly improve the efficiency of the experiments while introducing robustness toward instrumental imperfections such as radio frequency inhomogeneity. The improvements are demonstrated by numerical simulations as well as practical experiments on a 13Calpha,15N-labeled powder of glycine. The experiments demonstrate a gain of 53% in the efficiency for 15N to 13Calpha coherence transfer relative to the typically double-cross-polarization experiments.  相似文献   

17.
18.
Parkinson's disease (PD) is associated with the formation and deposition of amyloid fibrils of the protein alpha-synuclein (AS). It has been proposed that oligomeric intermediates on the pathway to fibrilization rather than the fibrils themselves are the pathogenic agents of PD, but efficient methods for their detection are lacking. We have studied the interfacial properties of wild-type AS and the course of its aggregation in vitro using electrochemical analysis and dynamic light scattering. The oxidation signals of tyrosine residues of AS at carbon electrodes and the ability of fibrils to adsorb and catalyze hydrogen evolution at hanging mercury drop electrodes (HMDEs) decreased during incubation. HMDEs were particularly sensitive to pre-aggregation changes in AS. Already after 1 h of a standard aggregation assay in vitro (stirring at 37 degrees C), the electrocatalytic peak H increased greatly and shifted to less negative potentials. Between 3 and 9 h of incubation, an interval during which dynamic light scattering indicated AS oligomerization, peak H diminished and shifted to more negative potentials, and AS adsorbability decreased. We tentatively attribute the very early changes in the interfacial behavior of the protein after the first few hours of incubation to protein destabilization with disruption of long-range interactions. The subsequent changes can be related to the onset of oligomerization. Our results demonstrate the utility of electrochemical methods as new and simple tools for the investigation of amyloid formation.  相似文献   

19.
Silicon nanoclusters were studied by 29Si and 13C MAS NMR (magic angle spinning) spectroscopy. We for the first time confirmed the cleavage of ordinary ether C—O bonds of the solvent in the process of the synthesis of nanoclusters and the “binding” of the decomposition products to the surface of silicon nanoparticles as ligands. The applicability of MAS NMR spectroscopy in the studies of silicon nanocluster ligand coating and in the determination of the processes leading to the formation of the nanoparticle ligand shell was demonstrated.  相似文献   

20.
Elastin is the main structural protein that provides elasticity to various tissues and organs in vertebrates. Molecular motions are believed to play a significant role in its elasticity. We have used solid-state NMR spectroscopy to characterize the dynamics of an elastin-mimetic protein as a function of hydration to better understand the origin of elastin elasticity. Poly(Lys-25), [(VPGVG)(4)(VPGKG)](39), has a repeat sequence common to natural elastin. (13)C cross-polarization and direct polarization spectra at various hydration levels indicate that water enhances the protein motion in a non-uniform manner. Below 20% hydration, the backbone motion increases only slightly whereas above 30% hydration, both the backbone and the side-chains undergo large-amplitude motions. The motional amplitudes are extracted from (13)C-(1)H and (1)H-(1)H dipolar couplings using 2D isotropic-anisotropic correlation experiments. The root mean square fluctuation angles are found to be 11-18 degrees in the dry protein and 16-21 degrees in the 20% hydrated protein. Dramatically, the amplitudes increase to near isotropic at 30% hydration. Field-dependent (1)H rotating-frame spin-lattice relaxation times (T(1rho)) indicate that significant motions occur on the microsecond time-scale (1.2-2.3 micros). The large-amplitude and low-frequency motion of poly(Lys-25) at relatively mild hydration indicates that the conformational entropy of the protein in the relaxed state contributes significantly to the elasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号