首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
o-(Fluorosilyl)(dimesitylboryl)benzenes have been prepared as colorless crystals by reacting fluorodimesitylborane with o-(fluorodimethylsilyl)phenyllithium and o-(fluorodiphenylsilyl)phenyllithium. The o-(fluorosilyl)(dimesitylboryl)benzenes serve as B/Si bidentate Lewis acid and efficiently capture fluoride ion from potassium fluoride in the presence of [2.2.2]cryptand or 18-crown-6 in toluene, giving the corresponding mu-fluoro bridged products. The structures were characterized by X-ray crystal structure analysis and multinuclear NMR spectroscopy. Fluoride ion affinities of the o-(fluorosilyl)(dimesitylboryl)benzenes were evaluated in comparison with non-silylated triarylborane.  相似文献   

2.
Liu ZQ  Shi M  Li FY  Fang Q  Chen ZH  Yi T  Huang CH 《Organic letters》2005,7(24):5481-5484
[reaction: see text] Three organoboron compounds are shown to be two-photon fluorescent sensors for fluoride anion with high sensitivity and selectivity. The recognition mechanism is attributed to the unique steric structure of the bulky dimesitylboryl group and the Lewis acid-base interaction between trivalent boron atom and fluoride anion.  相似文献   

3.
Two linear π-conjugated systems with 1,3-diethyl-1,3,2-benzodiazaborolyl [C(6)H(4)(NEt)(2)B-] as a donor group and dimesitylboryl (-BMes(2)) as acceptor were synthesised with -ethynylene-phenylene- (-C[triple bond, length as m-dash]C-1,4-C(6)H(4)-, 3) and -ethynylene-thiophene- (-C[triple bond, length as m-dash]C-2,5-C(4)H(2)S-12) bridges between the boron atoms. An assembly (20) consisting of two diazaborolyl-ethynylene-phenylene-boryl units, [C(6)H(4)(NCy)(N')B-C[triple bond, length as m-dash]C-1,4-C(6)H(4)-BMes(2)] joined via a 1,4-phenylene unit at the nitrogen atoms (N') of the diazaborolyl units was also synthesised. The three push-pull systems, 3, 12 and 20, form salts on fluoride addition with the BMes(2) groups converted into (BMes(2)F)(-) anions. The molecular structures of 3, 12 and (NBu(4))(12·F) were elucidated by X-ray diffraction analyses. The borylated systems 3, 12 and 20 show intense blue luminescence in cyclohexane with quantum yields (Φ(fl)) of 0.99, 0.44 and 0.94, respectively, but weak blue-green luminescence in tetrahydrofuran (Φ(fl) = 0.02-0.05). The charge transfer nature of these transitions is supported by TD-DFT computations with the CAM-B3LYP functional. Addition of tetrabutylammonium fluoride to tetrahydrofuran solutions of 3 and 20 resulted in strong violet-blue luminescence with emission intensities up to 46 times more than the emission intensities observed prior to fluoride addition. Compounds 3 and 20 are demonstrated here as remarkable 'turn-on' fluoride sensors in tetrahydrofuran solutions.  相似文献   

4.
The reaction of 10-bromo-9-oxa-10-boraanthracene with the tetrakis(tetrahydrofuran)lithium salt of dimesityl-1,8-naphthalenediylborate in diethyl ether affords 1-(dimesitylboryl)-8-(10'-bora-9'-oxaanthryl)naphthalene (2). This diborane reacts with [Me3SiF2][S(NMe2)3)] to afford the anionic complex [2-mu2-F]-, which has been isolated as a [S(NMe2)3]+ salt. The cyclic voltammograms of diborane 2 as well as 1-(dimesitylboryl)-8-(10'-bora-9'-thiaanthryl)naphthalene (1) exhibit two reversible reductions at E(1/2) = -2.200 and -2.566 V (vs FcH/FcH+) for 1 and E(1/2) = -2.248 and -2.620 V (vs FcH/FcH+) for 2 corresponding to the sequential reduction of the two boron centers. These two waves simultaneously disappear upon fluoride addition, thus indicating the formation of fluoride chelate complexes [1-mu2-F]- and [2-mu2-F]-. To identify the origin of the high fluoride affinity displayed by these diboranes, the structures of 2 and [2-mu2-F]- have been studied experimentally and computationally. The crystallographic studies show that the structure of 2 is distorted, thus indicating the presence of important steric repulsions between the neighboring boryl moieties. By contrast, the structure of the anionic complex [2-mu2-F]- is much more sterically relaxed than that of 2, as indicated by a reduction of the B-B distance from 3.279(4) A in 2 to 2.922(7) A in [2-mu2-F]-. The structural results suggest that the high fluoride affinity displayed by 2 results, at least in part, from the relief of steric repulsions induced by fluoride binding. Finally, the nature of the bonding as well as the strength of the interactions involved in the B-F-B bridge of [2-mu2-F]- has been studied using density functional theory calculations and Atoms-In-Molecules analyses. These calculations indicate that the enthalpic gain associated with the formation of two B-F bonds in [2-mu2-F]- only amounts to a fraction of the energy of a terminal B-F bond. These calculations also suggest that the relief of steric repulsions induced by fluoride binding in 2 may contribute to the high fluoride affinity of these types of molecules.  相似文献   

5.
A bis(dimesitylboryl)dibenzoazaborine formed Lewis acid-base type complexes with up to two cyanide ions in stepwise fashion. The complex formation constants for cyanide ion were larger than those for fluoride ion, despite the higher affinity of fluoride ion to boron atoms than that of cyanide ion.  相似文献   

6.
王伟  方奇  刘志强  曹笃霞  邓敏智 《化学学报》2005,63(14):1323-1328
N-烷基咔唑作为电子给体和共轭桥中心, 二米基硼作为端基电子受体, 合成了两个V形A-π-D-π-A型新化合物: 3,6-二{[(E)-2-(5-二米基硼)噻吩]乙烯基}-N-丁基-咔唑 {N-butyl-3,6-bis{(E)-2-[5-(dimesitylboryl)thiophen-2-yl]-vinyl}-carbazole, BBTC}和3,6-二[(E)-(4-二米基硼)苯乙烯基]-N-己基-咔唑, {N-hexyl-3,6-bis[(E)-4-(dimesitylboryl)-styryl]-carbazole, BBSC}. 这两个化合物在蓝绿光波段都有较强的荧光发射. 光谱数据表明, 扩大共轭体系并在端基引入含硼基团导致吸收谱和发射谱显著红移, 并增大分子内电荷转移.  相似文献   

7.
With the recognition of aqueous fluoride and cyanide ions as an objective, we have investigated the anion binding properties of two isomeric ammonium boranes, namely [p-(Mes2B)C6H4(NMe3)]+ ([1]+) and [o-(Mes2B)C6H4(NMe3)]+ ([2]+). These cationic boranes, which could be obtained by reaction of the known 4- and 2-dimesitylboryl-N,N-dimethylaniline with MeOTf, have been investigated both experimentally and computationally. They both react with fluoride and cyanide ions in organic solvents to afford the corresponding fluoroborate/ or cyanoborate/ammonium zwitterions 1F, 1CN, 2F, and 2CN. In aqueous solution, however, these cationic boranes behave as remarkably selective receptors. Indeed, [1]+ only complexes cyanide ions while [2]+ only complexes fluoride ions. In H2O/DMSO 60:40 vol (HEPES 6 mM, pH 7), the cyanide binding constant of [1]+ and the fluoride binding constant of [2]+ are respectively equal to 3.9 (+/-0.1) x 108 and 910 (+/-50) M-1. Structural and computational studies indicate that both steric and electronic effects contribute to the unusual selectivity displayed by these cationic boranes. Owing to favorable Coulombic effects, the para-derivative [1]+ has a very high affinity for cyanide; yet these effects are not sufficiently intense to allow complexation of the more efficiently hydrated and less basic fluoride anion. In the case of the ortho-derivative [2]+, the proximity of the ammonium moiety leads to an increase in the Lewis acidity of the boron center thus making fluoride binding possible. However, steric effects prevent cyanide coordination to the boron center of [2]+. Finally, cation [1]+ and [2]+ bind their dedicated anions reversibly and show a negligible response in the presence of other common anions including Cl-, Br-, I-, NO3-, OAc-, H2PO4-, and HSO4-.  相似文献   

8.
A series of triarylboranes, in which different substituents are introduced at the para position of the dimethylamino group of a 2‐dimesitylboryl‐2’‐(N,N‐dimethylamino)biphenyl core unit, have been comprehensively investigated to explore the effect of structural modification on photophysical properties. The introduction of electron‐accepting substituents would facilitate the HOMO→LUMO charge transfer (CT) transition. In contrast, the intramolecular CT transition is significantly prohibited when electron‐donating substituents are incorporated. Notably, the HOMO→LUMO CT transition mainly consists of the transition from the electron‐donating amino group to an electron acceptor other than boryl when a strong electron acceptor such as the dicyanovinyl group is present. This dicyanovinyl‐substituted compound displays sensing abilities to discriminate fluoride and cyanide ions. In solution in THF, the fluoride ions first bind to the boron center, then attack the α‐carbon atom of the dicyanovinyl group, whereas the cyanide anion acts on the electron‐accepting centers in the reverse sequence. As a result, the absorption and emission change in different manners upon addition of fluoride and cyanide ions.  相似文献   

9.
As the most nucleophilic porphyrins, meso‐ or β‐lithiated porphyrins were generated by iodine–lithium exchange reactions of the corresponding iodoporphyrins with n‐butyllithium at ?98 °C. Porphyrinyllithiums thus prepared were used for synthesis of dimesitylporphyrinylboranes through reactions with fluorodimesitylborane. The boryl groups proved to serve as an electron‐accepting unit to alter the photophysical and electrochemical properties. In addition, 5‐diarylamino‐15‐dimesitylboryl‐substituted donor–accepter porphyrins showed increased intramolecular charge‐transfer character in the S1 state. Furthermore, the reaction of β‐lithiated porphyrin with dichloromesitylborane provided a boron‐bridged porphyrin dimer, which exhibited a conjugative interaction between two porphyrin units through the vacant p‐orbital on the boron center.  相似文献   

10.
The anionic boron peri-bridged naphthalene derivative, namely dimesityl-1,8-naphthalenediylborate (1), undergoes a hydrolysis reaction to afford dimesityl-1-naphthylborane (2) whose structure has been determined. Upon standing at room temperature in toluene for an extended period of time, 1 undergoes a ring expansion reaction to afford 8,10,11a-trimethyl-7-mesityl-11aH-7-boratabenzo[de]anthracene (3). As shown by its crystal structure, compound 3 constitutes a rare example of a borataalkene and features a carbon-boron double bond of 1.475(6) Angstroms incorporated in a conjugated hexa-1-boratatriene system. The reaction of 1 with 9-chloro-9-borafluorene and 5-bromo-10,11-dihydrodibenzo[b,f]borepin results in the formation of diboranes 4 and 5 which bear two different boryl moieties at the peri-positions of naphthalene. These diboranes have been characterized by multinuclear NMR spectroscopy and X-ray single crystal analysis. The boron center of the borafluorenyl moiety is pi-coordinated to the ipso-carbon of a mesityl group with which it forms a contact of 2.730(3) Angstroms. The cyclic voltammogram of 2 in THF shows a quasi-reversible reduction wave at E(1/2)-2.41 V (vs. Fc/Fc+) corresponding to the formation of the radical anion. In the case of diboranes 4, 5 and 1-(dimesitylboryl)-8-(diphenylboryl)naphthalene (6), two distinct waves are observed at E(1/2)-2.14 and -2.56 V for 4, E(1/2)-2.26 and -2.78 V for 5, and E(1/2)-2.41 and -2.84 V for 6. The first reduction wave most likely indicates the formation of a radical anion in which the unpaired electron is sigma-delocalized over the two boron centers.  相似文献   

11.
A novel thiophene-bridged donor–acceptor system was synthesized with a carbazole as donor and a borole as acceptor unit. The borole group was successfully installed via the tin–boron exchange reaction of 1,1-dimethyl-2,3,4,5-tetraphenylstannole with 9-(5-(dibromoboryl)thiophen-2-yl)carbazole. The effect of the borole on the optoelectronic properties of the donor–acceptor system was explored by spectroscopic (UV/Vis and fluorescence spectroscopy), electrochemical (cyclic voltammetry) and theoretical (TD-DFT) methods as well as by modifying its structure. The corresponding donor–acceptor compound bearing the widely employed dimesitylboryl acceptor group was also synthesized for comparison.  相似文献   

12.
The properties of the intramolecular hydrogen bond (IMHB) in tropolone, aminotropone, and aminotroponimine have been compared with those in the corresponding saturated analogues at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level of theory. In general, all those compounds in which the seven-membered ring is unsaturated exhibit a stronger IMHB than their saturated counterparts. Nevertheless, this enhanced strength is not primarily due to resonance-assisted hydrogen-bond effects, but to the much higher intrinsic basicity and acidity of the hydrogen-bond acceptor and donor groups, respectively, in the unsaturated compounds. These acidity and basicity enhancements have a double origin: 1) the unsaturated nature of the moiety to which the hydrogen-bond donor and acceptor are attached and 2) the cyclic nature of the compounds under scrutiny. As has been found for hydroxymethylene and aminomethylene cyclobutanones, and cyclobutenones and their nitrogen-containing analogues, the IMHB strength follows the [donor, acceptor] trend: [OH, C=NH]>[OH, C=O]>[NH(2), C=NH]>[NH(2), C=O] and fulfills a Steiner-Limbach correlation similar to that followed by intermolecular hydrogen bonds.  相似文献   

13.
The diarylethene derivative 1,2‐bis‐(5′‐dimesitylboryl‐2′‐methylthieny‐3′‐yl)‐cyclopentene ( 1 ) containing dimesitylboryl groups is an interesting photochromic material. The dimesitylboryl groups can bind to F?, which tunes the optical and electronic properties of the diarylethene compound. Hence, the diarylethene derivative 1 containing dimesitylboryl groups is sensitive to both light and F?, and its photochromic properties can be tuned by a fluoride ion. Herein, we studied the substituent effect of dimesitylboron groups on the optical properties of both the closed‐ring and open‐ring isomers of the diarylethene molecule by DFT/TDDFT calculations and found that these methods are reliable for the determination of the lowest singlet excitation energies of diarylethene compounds. The introduction of dimesitylboron groups to the diarylethene compound can elongate its conjugation length and change the excited‐state properties from π→π* transition to a charge‐transfer state. This explains the modulation of photochromic properties through the introduction of dimesitylboron groups. Furthermore, the photochromic properties can be tuned through the binding of F? to a boron center and the excited state of the diarylethene compound is changed from a charge‐transfer state to a π→π* transition. Hence, a subtle control of the photochromic spectroscopic properties was realized. In addition, the changes of electronic characteristics by the isomerization reaction of diarylethene compounds were also investigated with theoretical calculations. For the model compound 2 without dimesitylboryl groups, the closed‐ring isomer has better hole‐ and electron‐injection abilities, as well as higher charge‐transport rates, than the open‐ring isomer. The introduction of dimesitylboron groups to diarylethene can dramatically improve the charge‐injection and ‐transport abilities. The closed isomer of compound 1 ( 1 C ) has the best hole‐ and electron‐injection abilities, whereas the charge‐transport rates of the open isomer of compound 1 ( 1 O ) are higher than those of 1 C . Importantly, 1 O is an electron‐accepting and ‐transport material. These results show that the diarylethene compound containing dimesitylboryl groups has promising potential to be applied in optoelectronic devices and thus is worth to be further investigated.  相似文献   

14.
Novel triply hydrogen bonded suprastructures based on [M(tdpd)2(L)2]2- (H2tdpd=1,4,5,6-tetrahydro-5,6-dioxo-2,3-pyrazinedicarbonitrile, L=solvent) and melamine-analogous cations have been synthesized and characterized. The use of anions containing two AAA sets from [M(tdpd)2(L)2]2- together with cations containing one DDD set (A=hydrogen-bond acceptor, D=hydrogen-bond donor) leads to the formation of complementary triply hydrogen bonded modules in the solid state. In all cases, the building module is further extended via additional hydrogen-bonding interactions to produce a tape, and tapes are assembled into sheets. These results show that a hydrogen-bonded module consisting of different kinds of building blocks, one of which is a metal complex that includes hydrogen-bond acceptor sites and the other is a hydrogen-bond donor molecule, will be attractive for constructing metal-containing supramolecular systems by the self-assembly technique.  相似文献   

15.
A series of dimesitylboryl acceptor (mesityl=2,4,6-trimethylphenyl) and/or diphenylamino donor (-N(Ph)2)-substituted truxene derivatives, classified as D-or-A substituted compounds and D-and-A substituted charge-transfer compounds, have been synthesized. Two D-and-A substituted truxene compounds, namely, 2-dimesitylboryl-7,12-di(N,N-diphenylamino)-5,5',10,10',15,15'-hexaethyltruxene (BN2) and 2,7-di(dimesitylboryl)-12-(N,N-diphenylamino)-5,5',10,10',15,15'-hexaethyltruxene (B2N), exhibit extraordinarily large solvatochromism ranging from 420 nm (in hexane) to 580 nm (in acetonitrile) in aprotic solvents, which can be used to probe the polarity of the solution environment. Due to proton-donor interactions, the solvatochromic red shift of BN2 and B2N in protic solvents has been significantly decreased, and this effect can be used to identify local protic and aprotic environment. Furthermore, because of the interaction between F- and acceptor, BN2 and B2N show sharp spectral response to fluoride ion concentration. The simultaneous "turn-off" at 500 nm and "turn-on" at 380 nm of the fluorescence signal have provided a good example of a fluorescent ratiometric method, which can greatly enhance the sensitivity of the fluoride ion probe. Underlying these interesting spectral phenomena and multifunctional probe properties is the charge-transfer strategy of grafting donor and acceptor moieties, as A-pi-D2 or A2-pi-D style, to the triangular truxene.  相似文献   

16.
Asymmetric 1,4-addition of 9-phenyl-9-borabicyclo[3.3.1]nonane (2m) to 2-cyclohexenone (1a) proceeded with high enantioselectivity in toluene at 80 degrees C in the presence of 3 mol % of a rhodium catalyst generated from [Rh(OMe)(cod)]2 and (S)-binap to give a high yield of boron enolate (S)-3am, which is 98% enantiomerically pure. Reaction of the boron enolate 3am with electrophiles, methanol-d, propanal, and allyl bromide, gave the corresponding 2-substituted (3S)-3-phenylcyclohexanones with perfect regio- and diastereoselectivity.  相似文献   

17.
Addition of 2 equiv of a sigma-donor ligand (L = pyridine, 4-picoline, or quinoline) to complexes of the type [W(NPh)(eta(4)-arene)(o-(Me3SiN)2C6H4)] (arene = CH3CH2C6H5 (3), CH3CH2CH2C6H5 (4)) gave the W(IV)L2 compounds, [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2] (5), [W(NPh)(o-(Me3SiN)2C6H4)(p-C6H7N)2] (6), and [W(NPh)(o-(Me3SiN)2C6H4)(C9H7N)2] (7). Synthesis of compounds 5 and 6 by Na degrees reduction of [W(NPh)(o-(Me3SiN)2C6H4)Cl2] in the presence of 3 equiv of L (L = 5, pyridine or 6, 4-picoline) is also presented. Compounds 5, 6, and 7 display hindered rotation of the donor ligands about the W-N bonds, resulting from a steric interaction with the Me3Si groups of the diamide ligand. The coordinative unsaturation of 5 and 6 has also been explored. Compounds 5 and 6 readily react with either CO and PMe3 to generated the six coordinate complexes [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)2(CO)] (8a), [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)2(CO)] (8b), [W(NPh)(o-(Me3SiN)2C6H4)(C5H5N)(PMe3)2] (10a), and [W(NPh)(o-(Me3SiN)2C6H4)(C6H7N)(PMe3)2] (10b), respectively.  相似文献   

18.
Synthesis, redox, spectroscopic, and photophysical properties of a new class of Pt(II) complexes of the type [PtLnCl]+ are reported, where Ln is 4'-phenyl(dimesitylboryl)-2,2':6',2"-terpyridine (L1) or 4'-duryl(dimesitylboryl)-2,2':6',2"-terpyridine (L2). The free L1 or L2 ligand in CH3CN shows the absorption band responsible for intramolecular charge transfer (CT) from the pi-orbital of the aryl group in L1 or L2 (pi(aryl)) to the vacant p-orbital on the boron atom (p(B)), in addition to pipi* absorption in the 2,2':6',2"-terpyridine (tpy) unit. In particular, the L1 ligand shows an intense CT absorption band as compared with L2. Such intramolecular pi(aryl)-p(B) CT interactions in L1 give rise to large influences on the redox, spectroscopic, and photophysical properties of [PtL1Cl]+. In practice, [PtL1Cl]+ shows strong room-temperature emission in CHCl3 with the quantum yield and lifetime of 0.011 and 0.6 micros, respectively, which has been explained by synergetic effects of Pt(II)-to-L1 MLCT and pi(aryl)-p(B) CT interactions on the electronic structures of the complex. In the case of [PtL2Cl]+, the dihedral angle between the planes produced by the tpy and duryl(dimesitylborane) groups is very large (84 degrees ) as compared with that between the tpy and phenyl(dimesitylborane) units in [PtL1Cl]+ (26-39 degrees ), which disturbs electron communication between the Pt(II)-tpy and arylborane units in [PtL2Cl]+. Thus, [PtL2Cl]+ is nonemissive at room temperature. The important roles of the synergetic CT interactions in the excited-state properties of the [PtL1Cl]+ complex are shown clearly by emission quenching of the complex by a fluoride ion. The X-ray crystal structure of [PtL1Cl]+ is also reported.  相似文献   

19.
Symmetric‐ and asymmetric hexaarylbenzenes (HABs), each substituted with three electron‐donor triarylamine redox centers and three electron‐acceptor triarylborane redox centers, were synthesized by cobalt‐catalyzed cyclotrimerization, thereby forming compounds with six‐ and four donor–acceptor interactions, respectively. The electrochemical‐ and photophysical properties of these systems were investigated by cyclovoltammetry (CV), as well as by absorption‐ and fluorescence spectroscopy, and compared to a HAB that only contained one neighboring donor–acceptor pair. CV measurements of the asymmetric HAB show three oxidation peaks and three reduction peaks, whose peak‐separation is greatly influenced by the conducting salt, owing to ion‐pairing and shielding effects. Consequently, the peak‐separations cannot be interpreted in terms of the electronic couplings in the generated mixed‐valence species. Transient‐absorption spectra, fluorescence‐solvatochromism, and absorption spectra show that charge‐transfer states from the amine‐ to the boron centers are generated after optical excitation. The electronic donor–acceptor interactions are weak because the charge transfer has to occur predominantly through space. Moreover, the excitation energy of the localized excited charge‐transfer states can be redistributed between the aryl substituents of these multidimensional chromophores within the fluorescence lifetime (about 60 ns). This result was confirmed by steady‐state fluorescence‐anisotropy measurements, which further indicated symmetry‐breaking in the superficially symmetric HAB. Adding fluoride ions causes the boron centers to lose their accepting ability owing to complexation. Consequently, the charge‐transfer character in the donor–acceptor chromophores vanishes, as observed in both the absorption‐ and fluorescence spectra. However, the ability of the boron center as a fluoride sensor is strongly influenced by the moisture content of the solvent, possibly owing to the formation of hydrogen‐bonding interactions between water molecules and the fluoride anions.  相似文献   

20.
A propeller-shaped boron-nitrogen compound (NB(3)) with three binding sites for fluoride anions was synthesized and investigated by optical absorption, luminescence, and ((1)H, (11)B, (13)C, (19)F) NMR spectroscopy. Binding of fluoride in dichloromethane solution occurs in three clearly identifiable steps and leads to stepwise blocking of the three initially present nitrogen-to-boron charge transfer pathways. As a consequence, the initially bright blue charge transfer emission is red-shifted and decreases in intensity, until it is quenched completely in presence of large fluoride excess. Fluoride binding constants were determined from global fits to optical absorption and luminescence titration data and were found to be K(a1) = 4 × 10(7) M(-1), K(a2) = 2.5 × 10(6) M(-1), and K(a3) = 3.2 × 10(4) M(-1) in room temperature dichloromethane solution. Complexation of fluoride to a given dimesitylboryl site increases the electron density at the central nitrogen atom of NB(3), and this leads to red shifts of the remaining nitrogen-to-boron charge transfer transitions involving yet unfluorinated dimesitylboryl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号