首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented from experimental studies of the current-voltage characteristics of a reflex discharge with a self-heating electrode used in a source of atomic hydrogen. The processes occurring in a discharge cell and governing the main features of the characteristics obtained are investigated theoretically. An explanation of the general features of the discharge is proposed. It is shown that an abrupt decrease in the discharge voltage with increasing hydrogen flow rate is associated with penetration of the plasma into the hollow cathode and the ignition of a hollow cathode discharge. It is demonstrated that, as the discharge current increases, the glow discharge gradually transforms into an arc discharge with a heated cathode.  相似文献   

2.
A magnetron discharge with a cold hollow cathode and an uncooled rod cathode is studied. It is shown that such a discharge can be efficiently used to generate a plasma emitting charged particles. For a discharge current of 2 A and an accelerating voltage of 10 kV, ion and electron emission currents of 0.1–0.15 and 1 A, respectively, are achieved. The energy cost of ion extraction is 1–2 W/mA, which is two to five times less than for typical ion sources, and the energy efficiency is 15 mA/W, which is a factor of five or six higher than for electron emitters based on a hollow-cathode reflex discharge.  相似文献   

3.
A crossed-field cold-hollow-cathode arc is stable at low working gas pressures of 10−2–10−1 Pa, magnetic-field-and gas-dependent arcing voltages of 20–50 V, and discharge currents of 20–200 A. This is because electrons come from a cathode spot produced on the inner cathode surface by a discharge over the dielectric surface. The magnetic field influences the arcing voltage and discharge current most significantly. When the plasma conductivity in the cathode region decreases in the electric field direction, the magnetic field increases, causing the discharge current to decline and the discharge voltage to rise. The discharge is quenched when a critical magnetic field depending on the type of gas is reached. Because of the absence of heated elements, the hollow cathode remains efficient for long when an arc is initiated in both inert and chemically active gases.  相似文献   

4.
We report on the results of successful implementation of full grid control in a cesium discharge with a cathode spot. The discharge is quenched by a negative grid pulse for a discharge current density up to 75 A/cm2 in the grid plane for voltage switching up to 100 V in the pressure range 0.5–1.5 Pa for a voltage drop of 5–6 V in the discharge. It is shown that quenching is the break-off type. The discovered effect of “evacuation” of the heavy component (ions) from the grid-anode gap to the cathode region leads to an unusually long (hundreds of microseconds) time of stabilization of the steady state in the discharge under the experimental conditions.  相似文献   

5.
A new geometrical relationship between the shape and dimensions of the cathode cavity of a reflex discharge with a cold hollow cathode is determined. The discharge characteristics and the emission properties of the discharge plasma are investigated experimentally. The conditions are determined for generating a cathode plasma that is highly inhomogeneous in the radial direction and the possibility of creating such a plasma is demonstrated. The existence of a stationary double electric layer with a potential drop of 14–16 V in the aperture of the cathode cavity is revealed. Specific features of the longitudinal extraction of plasma ions through the wall layer of the reflex and hollow cathodes are considered.  相似文献   

6.
Ion emission from the plasma of a low-pressure (≈5×10−2 Pa) glow discharge with electrons oscillating in a weak (≈1 mT) magnetic field is studied in relation to the cold hollow cathode geometry. A hollow conic cathode used in the electrode system of a cylindrical inverted magnetron not only improves the extraction of plasma ions to ≈20% of the discharge current but also provides the near-uniform spatial distribution of the ion emission current density. The reason is the specific oscillations of electrons accelerated in the cathode sheath. They drift in the azimuth direction along a closed orbit and simultaneously move along the magnetic field toward the emitting surface of the plasma. A plasma emitter with a current density of ≈1 mA/cm2 over an area of ≈100 cm2 designed for an ion source with an operating voltage of several tens of kilovolts is described.  相似文献   

7.
The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed–periodic mode with a current of 0.1–1.0 kA, pulse width of 0.1–1.0 ms, and a pulse repetition rate of 0.1–1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode’s surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100–200 eV) and a gas pressure of 0.1–0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.  相似文献   

8.
It is shown experimentally that the plasma of a hollow-cathode reflex discharge is characterized by a nonequilibrium electron velocity distribution. The parameters of the electron distribution, which is approximated by a superposition of two Maxwellian distributions with different temperatures, are estimated. The penetration of the discharge plasma into the hollow cathode at various cathode potentials and a gas pressure of ∼10\t− 2 Pa is studied. It is shown that the plasma parameters in the hollow electrode depend not only on the parameters of the reflex-discharge plasma, but also on the magnitude and configuration of the magnetic and electric fields in the plasma expansion region. It is shown that the plasma penetration can be accompanied by quasineutrality violation and the formation of space-charge double layers. Experiments confirm that the ion current from the nonequilibrium plasma exceeds the Bohm current.  相似文献   

9.
Results are presented from an experimental investigation of a low-pressure glow discharge with a wedge-shaped hollow cathode in a plasma electron source, where this discharge is initiated by reflex and magnetron discharges. Zh. Tekh. Fiz. 69, 135–137 (July 1999)  相似文献   

10.
Transition of Discharge Mode of a Local Hollow Cathode Discharge   总被引:1,自引:0,他引:1       下载免费PDF全文
The discharge characteristics of hollow cathode discharge in argon in a cylindrical cavity are investigated experi- mentally. The voltage-current (V - I) characteristics and the light emission are measured. It is found that the discharge plasma is localized inside the hollow cavity, with an extensive Faraday dark space between the cathode and the anode. The discharge develops from predischarge to abnormal glow discharge, the hollow cathode effect (HCE) and a hybrid mode as the discharge current increases. The onset of the HCE is found for the first time by the transition from abnormal glow discharge together with a significant decrease in the slope of the V - I curve which shows a positive differential resistivity. The voltage increases proportionally with the current when the HCE is reached.  相似文献   

11.
A study is made of the effect of pulse repetition rate (0.1−103 s−1) and average discharge current (0–1 A) on the breakdown delay time and burning voltage of low-pressure glow discharges (p<0.1 Pa) in an electrode system of the reverse magnetron type with a large cathode surface area (≈103 cm2). It is shown that increasing the repetition rate leads to a many-fold reduction in the statistical spread in the delay time and in the discharge formation time, while the average discharge current has a significant effect on the burning voltage. The mechanism for the observed phenomena is interpreted qualitatively in terms of the presence of thin dielectric films on the cathode surface. Zh. Tekh. Fiz. 69, 20–24 (May 1999)  相似文献   

12.
Parameters and ion-emission characteristics of the plasma generated in the anode stage of an ion source with a hollow glow-discharge plasma cathode are studied. To decrease the minimum operating gas pressure to 5×103 Pa, a multipole magnetic system was installed on the surface of the hollow cathode and the peripheral magnetic field was enhanced in the anode stage of the source. The effect of the gas pressure, the plasma-cathode current, and the voltage between the electrodes of the anode stage on the value of the ion current extracted from the plasma is investigated. It is found that the size of the exit aperture of the hollow cathode substantially affects the efficiency of ion extraction. The potential (1–5 V) and the electron temperature (1–8 eV) of the anode-stage plasma are measured by the probe method. The conditions are determined that ensure the maximum ion-emission current from the plasma at low gas pressures.  相似文献   

13.
The cw output power of the uv CuII laser has been optimized with respect to the hollow cathode geometry, the discharge current, the fill gas pressure and the resonator mirror parameters. A maximum laser output power of 900 mW for multiline operation at 248.6, 259.1, 260.0, and 270.3 nm was achieved with 100 A discharge current, 260 V voltage and 16 mbar fillgas pressure, when a hollow cathode of 1.2 m length and 2×6 mm2 cross section was employed. The single-pass pain gl has been estimated to 7%. A hollow cathode cross section of 1.5×4.5 mm2 is suggested as an optimum geometry. In addition, some investigations on the mechanism of the laser power decay in Ne–Cu-discharges are presented.  相似文献   

14.
Fast electrons leaving a hollow cathode discharge axially through the orifice of a hole probe undergo ionizing collisions with the discharge gas in and behind the orifice. Ar++ ions produced in this way are used as a monitor for the density of fast electrons, Nef, on the axis of the negative glow of a cylindrical hollow cathode discharge. Data on Nef as dependent on the pressure of the Ar discharge gas and on the discharge current are obtained and an analytical expression for these dependences is found and discussed.  相似文献   

15.
This paper reports the operation of a cylindrical hollow cathode discharge with current risetimes of a few nanoseconds at current densities at the entrance of the cathode in the range of 50-560A · cm-2 and at voltages of 280-850 V. Time-dependent measurements of the impedance of the discharge are presented. They allow for the evaluation of discharge quantities such as risetime, delay time, discharge voltage, and current, depending on the operation parameters as applied voltage, pressure, and preionization. The power density in the active region of the hollow cathode exceeded 200 kW · cm-3.  相似文献   

16.
Switchover from a runaway-electromnduced volume discharge to a spark is studied when a nanosecond discharge is initiated in high-pressure nitrogen an d air at a voltage of 50–250 kV. In the case of a cathode with a small radius of curvature and a flat anode and in the presence of cathode spots, the leader of the spark channel may propagate from the flat cathode. When the rate of rise of the voltage across centimeterwide gaps is high (dU/dt ∼ 1015 V/s or higher), cathode spots in the case of a corona discharge emerge within 200 ps.  相似文献   

17.
The breakdown behaviour of a hollow cathode glow discharge is investigated in a cylindrical, hollow cathode structure having an internal diameter of 2 cm. The anode is a plane electrode across one end of the cathode cylinder. Pressures of argon between 20 and 107 Pa were used (0.15 to 0.80 torr), and applied voltages between 800 and 2500 V. It is shown that the statistical time lag for breakdown is in the range of ~ 1 ms and depends on the applied voltage, the gas pressure, and the history of operation of the discharge tube. The rise time of the discharge current ranges from about 10 ns at high pressure and voltage to about 200 ns at the lowest pressure and voltage used. The discharge propagates along the cathode axis at a speed of about 108 cm s?1. From the obtained data, a qualitative model of the first stage of the discharge is derived. Based on this model, a simple calculation gives values of Townsend modified first coefficient η at high values of E/N, 104 < E/N < 8 · 104 Td which fit well at the lowest E/N, where they approach the data of PENNING and KRUITHOF in argon. In contrast to the extremely short initial current-rise times, in the submicrosecond range, the discharge currents reach steady-state values only after about 300 μs.  相似文献   

18.
Experimental data for the electrical and optical characteristics of a transverse slot-cathode nanosecond discharge are reported. The discharge is initiated in He at a discharge current of 1–500 A and a working gas pressure in a discharge chamber ranging from 102 to 104 Pa. It is shown that the cathode current density is much (several orders of magnitude) higher than the total current density of an equivalent abnormal discharge. The electrical characteristics of an open discharge and a discharge confined by dielectric walls are found to differ considerably. Electrons passing through the cathode fall region acquire a high energy (on the order of 1 keV) under the given conditions. The fast electron relaxation conditions correlate with the initiation and evolution of the discharge. A pattern of the discharge evolution is derived from experimental data. A way of estimating the coefficient of electron emission from the cathode plasma is suggested.  相似文献   

19.
The intensity of Cu-II lines with upper level energies near and above those of the He ion was measured as a function of He pressure in a Cu hollow cathode tube. In this tube at low pressures the negative glow could expand above the cathode. The maximum intensity of the Cu-II 493.1 nm line was found in the low voltage, high pressure hollow cathode discharge region in accordance with a resonant charge transfer excitation process. Enhancement of the intensity of the Cu-II 436.5 nm and 417.9 nm lines was observed in the cathode glow at low pressures. Excitation of these lines is attributed to endoergic charge transfer collisions between He ions accelerated by the 2 kV tube voltage and ground state Cu atoms. The cross-section for this reaction exciting the 436.5 nm line was estimated to be of the order of 10–17 cm2.  相似文献   

20.
Spectral emission from a pulsed Cu hollow cathode was investigated in relation to discharge current to gain information on the density of the sputtered Cu vapor and on the persistence time of the metastable and ground-state atoms. The cathode was excited with 250 μsec discharge pulses at current densities up to 1 A/cm2, using He, Ne and Ar as buffer gases. The intensities of the emitted Cu I lines were found to depend strongly on the simmer current. In atmospheres of Ne or Ar, the intensities of the resonance lines exhibited characteristic maxima during the initial 20 μsec of the discharge pulses. The density of the sputtered Cu atoms was determined by absorption measurements using a second Cu hollow cathode as alight source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号