首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.  相似文献   

2.
In a system of two charge-qubits that are initially prepared in a maximally entangled Bell’s state, the dynamics of quantum memory-assisted entropic uncertainty, purity, and negative entanglement are investigated. Isolated external cavity fields are considered in two different configurations: coherent-even coherent and even coherent cavity fields. For different initial cavity configurations, the temporal evolution of the final state of qubits and cavities is solved analytically. The effects of intrinsic decoherence and detuning strength on the dynamics of bipartite entropic uncertainty, purity and entanglement are explored. Depending on the field parameters, nonclassical correlations can be preserved. Nonclassical correlations and revival aspects appear to be significantly inhibited when intrinsic decoherence increases. Nonclassical correlations stay longer and have greater revivals due to the high detuning of the two qubits and the coherence strength of the initial cavity fields. Quantum memory-assisted entropic uncertainty and entropy have similar dynamics while the negativity presents fewer revivals in contrast.  相似文献   

3.
We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime.We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su-Schrieffer Heeger(SSH)model via designing the effective optomechanical coupling.Especially,the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the opto mechanical coupling.We stress that the to pological phase transition is mainly induced by the decay of the cavity field,which is counter-intuitive since the dissipation is usually detrimental to the system.Also,we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice.We find that the quantum st ate transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields.Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.  相似文献   

4.
Entanglement and Bell violation with phase decoherence or dissipation   总被引:1,自引:0,他引:1  
The system of an atom couples to two distinct optical cavities with decoherence is studied by making use of a dynamical algebraic method. We adopt the concurrence to characterize the entanglement between atom and cavities or between two optical cavities in the presence of the phase decoherence or dissipation. It is found that the entanglement between atom and cavities can be controlled by adjusting the detuning parameter. We show that even if the atom is initially prepared in a maximally mixed state, it can also entangle the two mode cavity fields. Finally, the Bell violation of the cavity fields is discussed, and it is shown that both the detuning and decoherence can deteriorate the maximal amount of violation of Bell inequality for two mode cavity fields during the evolution.  相似文献   

5.
A scheme is proposed for the generation of a W state for three atoms trapped in spatially separated cavities connected by optical fibers via quantum Zeno dynamics. Our scheme is based on the resulting effective dynamics induced by continuous coupling between the atoms and cavities. The effects of decoherence such as atomic spontaneous emission and the fiber and cavity losses are considered. Numerical results show that the scheme is very robust against the cavity decay due to a tiny excitation probability of the cavity fields during the operation.  相似文献   

6.
We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.  相似文献   

7.
We consider a cantilever mechanical oscillator (MO) made of diamond. A nitrogen-vacancy (NV) center lies at the end of the cantilever. Two magnetic tips near the NV center induce a strong second-order magnetic field gradient. Under coherent driving of the MO, we find that the coupling between the MO and the NV center is greatly enhanced. We studied how to generate entanglement between the MO and the NV center and realize quantum state transfer between them. We also propose a scheme to generate two-mode squeezing between different MO modes by coupling them to the same NV center. The decoherence and dissipation effects for both the MO and the NV center are numerically calculated using the present parameter values of the experimental configuration. We have achieved high fidelity for entanglement generation, quantum state transfer, and large two-mode squeezing.  相似文献   

8.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.  相似文献   

9.
We investigate the influence of the initial mixture of qubits and the dissipation on the entanglement transfer from three-qubit Greenberger-Horne-Zeilinger (GHZ) and W state fields to three matter qubits, which are trapped in three spatially separated cavities. We find that at gt≈11.07, the entanglement transfer can be almost complete no matter what state the qubits are initially prepared in. When the dissipation is taken into account, we find that the spontaneous emission plays the similar role to the cavity damping in the entanglement transfer, and the decay rate of the GHZ state is larger than that of the W state.  相似文献   

10.
We investigate entanglement transfer from two separate cavities to the excitons in two quantum dots separately placed in the two cavities. The cavity fields and the excitons are treated as two continuous-variable (CV) subsystems. The time-dependent characteristic functions in the Wigner representation for the two subsystems are analytically obtained. Under the conditions that one of the two CV subsystems is initially prepared in a two-mode squeezed vacuum state and the other in its lowest energy state, we show that the entanglement reciprocation between the cavity fields and the excitons is realizable.  相似文献   

11.
罗成立  沈利托  刘文武 《物理学报》2013,62(19):190301-190301
研究了两个初始处于纠缠相干态上的宏观场各自独立地与一个环境相互作用的系统, 环境对腔场的影响只体现在腔场光子数的泄漏上. 采用共生纠缠(concurrence)度量两个宏观场间的纠缠, 并给出宏观场纠缠的解析解, 以分析这种系统中宏观场纠缠的动力学特性. 研究表明当场的初始平均光子数较大时, 即使很小的光子泄漏率也会导致腔场间出现纠缠突然死亡现象. 同时研究结果也表明光子从腔场泄漏到环境后会导致两环境间的纠缠突然产生, 而这种纠缠产生的时机直接与腔场的初始光子数相关. 本文还进一步发现在大光子数的情况下, 在任何时刻任意一个腔场与任意一个环境间都不会产生纠缠. 关键词: 纠缠相干态 环境 纠缠突然死亡 纠缠突然产生  相似文献   

12.
We discuss the evolution dynamics of a quantum system consisting of two two-level atoms separately embedded within two strongly coupled photonic crystal cavities.Although the quantum system is subjected to dissipation and decoherence from the cavity leakage and the atomic decay,it does allow for eigenstates that are not influenced by one of the two dissipation channels and results in dissipation-inhibition quantum states.These dissipationfree quantum states can help to achieve an extremely long photon and atom storage lifetime and provide a new perspective to realize efficient quantum information storage via reducing the negative influence of the dissipation from the environment.  相似文献   

13.
A hybrid quantum computing scheme is studied where the hybrid qubit is made of an ion trap qubit serving as the information storage and a solid-state charge qubit serving as the quantum processor, connected by a superconducting cavity. In this paper, we extend our previous work [CITE] and study the decoherence, coupling and scalability of the hybrid system. We present our calculations of the decoherence of the coupled ion-charge system due to the charge fluctuations in the solid-state system and the dissipation of the superconducting cavity under laser radiation. A gate scheme that exploits rapid state flips of the charge qubit to reduce decoherence by the charge noise is designed. We also study a superconducting switch that is inserted between the cavity and the charge qubit and provides tunable coupling between the qubits. The scalability of the hybrid scheme is discussed together with several potential experimental obstacles in realizing this scheme.  相似文献   

14.
An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.  相似文献   

15.
The notion that decoherence rapidly reduces a superposition state to an incoherent mixture implicitly adopts a special representation, namely, the representation of preferred (pointer) states (PS). For weak or strong system-envrionment interaction, the behavior of PS is well known. Via a simple dynamical model that simulates a two-level system interacting with few other degrees of freedom as its environment, it is shown that even for intermediate system-environment coupling, approximate PS may still emerge from the coherent quantum dynamics of the whole system in the absence of any thermal averaging. The found PS can also continuously deform to expected limits for weak or strong system-environment coupling. Computational results are also qualitatively explained. The findings should be useful towards further understanding of decoherence and quantum thermalization processes.  相似文献   

16.
利用两个二能级原子和用光纤联接的两个单模光腔构成的系统,给出了实现量子态转移的方案。该方案中两个二能级原子分别处于用光纤联接的单模腔中,并同时与光场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子态的转移。  相似文献   

17.
利用两个二能级原子和用光纤联接的两个单模光腔构成的系统,给出了实现量子态转移的方案。该方案中两个二能级原子分别处于用光纤联接的单模腔中,并同时与光场发生共振相互作用。通过控制原子与光场的相互作用时间,实现量子态的转移。  相似文献   

18.
We propose an arbitrary controlled-unitary(CU) gate and a bidirectional transfer scheme of quantum information(BTQI) for unknown photons.The proposed CU gate utilizes quantum non-demolition photon-number-resolving measurement based on the weak cross-Kerr nonlinearities(XKNLs) and two quantum bus beams;the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate.It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed.Compared with the existing optical multi-qubit or controlled gates,which utilize XKNLs and homodyne detectors,the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence.According to the CU gate,we present a BTQI scheme in which the two unknown states of photons between two parties(Alice and Bob) are mutually swapped by transferring only a single photon.Consequently,by using the proposed CU gate,it is possible to experimentally implement the BTQI scheme with a certain probability of success.  相似文献   

19.
利用全量子理论,分析了多个原子-腔场构成的联合系统中原子与腔场依赖强度的非共振相互作用过程.结果表明:通过控制原子与腔场相互作用时间,并对原子状态进行测量,原子最大纠缠态与类奇偶相干态光场的最大纠缠态可以相互转换;对失谐量的限制,使得二者之间完全交换,进一步证明封闭系统中的演化是可逆的.  相似文献   

20.
The generation and manipulation of single photons are crucial in advanced quantum technologies, such as quantum communication and quantum computation devices. High-purity single photons can be generated from classical light using the single-photon blockade(1 PB). However, the efficiency and purity are exclusive in 1 PB, which hinders its practical applications. Here, we show that the resonantly coupled plasmonic-photonic cavity can boost the efficiency of single-photon generation by more than three orders of magnitude compared with that of all-dielectric microcavity. This significant improvement is attributed to two new mechanisms of atom-microcavity coupling after introducing the plasmonic cavity: the formation of a quasi-bound state and the transition to the nonreciprocal regime, due to the destructive interference between the coupling pathways and the nonzero relative phase of the closed-loop coupling, respectively. The quasi-bound state has a relatively small decaying, while its effective coupling strength is significantly enhanced. Suppressing the dissipative component of the effective atom-microcavity coupling in the nonreciprocal regime can further improve single-photon performance, particularly without temporal oscillations. Our study demonstrates the possibility of enhancing the intrinsically low efficiency of 1 PB in low excitation regime, and unveils the novel light-matter interaction in hybrid cavities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号