首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We have investigated hole doped (by lithium) and electron-doped (by nickel metal) NiO with photoemission (PES), inverse photoemission (IPES) and low and high energy electron energy loss spectroscopy (EELS). Both types of doping create empty states approximately in the middle of the charge transfer gap of undoped NiO.  相似文献   

2.
We use x-ray absorption spectroscopy (XAS) and electron energy loss spectroscopy (EELS) to study the fine structure at the K edge of boron in MgB(2). We observe in XAS a peak of width 0.7 eV at the edge threshold, signaling a narrow energy region with empty boron p states near the Fermi level. The changes in the near edge structure observed in EELS with direction of the momentum transfer imply that these states have p(x)p(y) symmetry. Our observations are consistent with electronic structure calculations indicating a narrow energy window of empty p(x)p(y) states that falls to zero at 0.8 eV above the Fermi level. The disappearance of the p(x)p(y) feature in EELS at grain boundaries suggests that this signature may become powerful in probing superconductivity at nanoscale.  相似文献   

3.
Intra-atomic d-d transitions in NiO(100) and CoO(100) have been investigated with angle-resolved electron energy loss spectroscopy (EELS) at primary energies close to the metal 3s excitation threshold. Electron exchange scattering was found to be resonantly enhanced at the 3s threshold due to the temporary formation of a negative ion core state and its subsequent decay via Auger-like transitions. In both oxides the threshold is lowered several eV due to a strong electron- core hole interaction. Angle-dependent studies reveal a different dependency of exchange processes on the scattering angle as compared with nonresonant measurements and reveal a different angle dependence for each specific d-d transition. It is suggested that in these oxides large-angle single-step inelastic scattering contributes significantly to the EELS measurements in reflection mode.  相似文献   

4.
8 (M=K or Cs). No crystalline structure was observed in the reacted materials by X-ray diffraction. In situ metal deposition, TEM, and electron energy loss spectroscopy (EELS) measurements were performed on individual SWNT bundles at 300 K. The results showed that alkali metals can be reversibly intercalated into the SWNT bundles. Although intercalation induced structural disorder, individual nanotubes and to a large extent the bundles maintained their structural integrity after intercalation and de-intercalation. Received: 10 February 1998  相似文献   

5.
《Solid State Communications》2003,125(11-12):581-585
Thin films of ionic compounds of ZnS clusters were measured by electron energy loss spectroscopy (EELS) and ultraviolet photoelectron spectroscopy (UPS). A size effect was observed in the valence plasmon energy measured by EELS from which the coherence length of the plasmon excitation can be estimated. The difference between the lowest excitations observed in UPS and EELS can be explained by the final state charging effect of a single cluster ion in UPS, which strongly depends upon the nominal charges of the clusters.  相似文献   

6.
Initial oxidation process of Mg films was investigated by Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and ultraviolet photoelectron spectroscopy (UPS). A polycrystalline Mg film was exposed to oxygen at room temperature. An inspection of EELS reveals that the initial oxidation process could be classified according to the curve profile in the low energy loss region. The oxide formation is initiated after oxygen exposure of 3 L (Langmuir).  相似文献   

7.
It is of scientific importance to obtain graphene quantum dots (GQDs) with narrow‐size distribution in order to unveil their size‐dependent structural and optical properties, thereby further to explore the energy band diagram of GQDs. Here, a soft‐template microwave‐assisted hydrothermal method to prepare GQDs with diameters less than 5 nm ± 0.55 nm is reported. The size‐dependent photoluminescence (PL) quantum yield (QY) decay lifetime and electron energy loss spectroscopy (EELS) of the GQDs are studied systematically. The QY of the GQDs with an average diameter of 2 nm is the highest (15%) among all the samples investigated and the QY decreases with increasing diameter of the GQDs. The size‐dependence of the PL decay lifetime is also observed. The result suggests that spatial confinement effects related to radiative relaxation play an important role in the size‐dependent decay lifetime. A realistic energy band diagram of the GQDs is deduced from the experimental results.  相似文献   

8.
Electron energy-loss spectroscopy (EELS) and ab initio band structure calculations have been performed to determine the optical properties of wurtzite structured zinc oxide (ZnO) nanowires. Compared with other techniques, EELS significantly extends the energy range and is a useful technique for analysis of the dielectric properties on a microstructure level. The first-principles calculations allow deep insight into the experimental results. Furthermore, the polarization dependencies of optical properties have been discussed. Our results give some reference to the thorough understanding of optical properties of ZnO.  相似文献   

9.
Chemical shifts of the constituent atoms of primitive icosahedral quasicrystal (P-QC), face-centred icosahedral quasicrystal (F-QC) and 1/1-approximant (1/1-AP) of F-QC Zn–Mg–Zr alloys were investigated for the first time using high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Zn M-shell and Mg L-shell excitation EELS spectra of P-QC, F-QC and 1/1-AP alloys, only the quasicrystalline alloys showed a chemical shift towards the larger binding energy side. In Zn-L and Zr-L emission SXES spectra, the P-QC and F-QC alloys showed a chemical shift towards larger binding energy side. The magnitudes of the shifts in the Zn-L emission spectra of the quasicrystalline alloys were almost the same as for ZnO. These results strongly suggest a decrease in valence charge in quasicrystalline states. Therefore, it should be concluded that bonding in quasicrystalline states involves a characteristic increase in covalency compared with bonding in corresponding approximant and standard metal crystals.  相似文献   

10.
We present some EELS, SEE and K edge loss measurements on in situ cleaved graphite. Single particle excitations in the EELS measurements have been identified accordingly with some previous results on pure polycrystalline iron and are compared with available band structure calculations of graphite. The core edge loss spectroscopy performed in the reflection mode at low primary electron energy proved to be a powerful and rapid technique to study the partial density of empty states.  相似文献   

11.
Transition metal oxides are a class of materials that are vitally important for developing new materials with functionality and smartness. The unique properties of these materials are related to the presence of elements with mixed valences of transition elements. Electron energy-loss spectroscopy (EELS) in the transmission electron microscope is a powerful technique for measuring the valences of some transition metal elements of practical importance. This paper reports our current progress in applying EELS for quantitative determination of Mn and Co valences in magnetic oxides, including valence state transition, quantification of oxygen vacancies, refinement of crystal structures, and identification of the structure of nanoparticles.  相似文献   

12.
The properties of transition metal oxides are related to the presence of elements with mixed valences. The spectroscopy analysis of the valence states is feasible experimentally, but a spatial mapping of valence states of transition metal elements is a challenge to existing microscopy techniques. In this paper, with the use of valence state information provided by the white lines and near-edge fine structures observed using the electron energy-loss spectroscopy (EELS) in a transmission electron microscope (TEM), a novel experimental approach is demonstrated to map the valence state distributions of Mn and Co using the ratio of white lines in the energy-filtered TEM. The valence state map is almost independent of specimen thickness in the thickness range adequate for quantitative EELS microanalysis. An optimum spatial resolution of approximately 2 nm has been achieved for a two-phase Co oxides.  相似文献   

13.
Concentration gradients surrounding Ni4Ti3 precipitates grown by appropriate annealing in a Ni51Ti49 B2 austenite matrix are investigated by electron energy loss spectroscopy (EELS) and energy filtered transmission electron microscopy (EFTEM). Concentration gradients of approximately 1.0-2.0 at.% in Ni within the surrounding B2 matrix can be detected by both EELS and EFTEM, revealing a Ni depleted zone in the matrix. Besides the concentration gradients, the EELS integrated cross-section of the Ni L(2,3) edges for the Ni-depleted region increased slightly, when compared with a matrix region away from the precipitate and not depleted in Ni.  相似文献   

14.
The elemental distribution of a precipitate cross section, situated in a lean Al-Mg-Si-Cu-Ag-Ge alloy, has been investigated in detail by electron energy loss spectroscopy (EELS) and aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). A correlative analysis of the EELS data is connected to the results and discussed in detail. The energy loss maps for all relevant elements were recorded simultaneously. The good spatial resolution allows elemental distribution to be evaluated, such as by correlation functions, in addition to being compared with the HAADF image.The fcc-Al lattice and the hexagonal Si-network within the precipitates were resolved by EELS. The combination of EELS and HAADF-STEM demonstrated that some atomic columns consist of mixed elements, a result that would be very uncertain based on one of the techniques alone. EELS elemental mapping combined with a correlative analysis have great potential for identification and quantification of small amounts of elements at the atomic scale.  相似文献   

15.
Electron energy loss spectroscopy (EELS) is a powerful technique for studying Li-ion battery materials because the valence state of the transition metal in the electrode and charge transfer during lithiation and delithiation processes can be analyzed by measuring the relative intensity of the transition metal L3 and L2 lines. In addition, the Li distribution in the electrode material can be mapped with nanometer scale resolution. Results obtained for FeO0.7F1.3/C nanocomposite positive electrodes are presented. The Fe average valence state as a function of lithiation (discharge) has been measured by EELS and results are compared with average Fe valence obtained from electrochemical data. For the FeO0.7F1.3/C electrode discharged to 1.5 V, phase decomposition is observed and valence mapping with sub-nanometer resolution was obtained by STEM/EELS analysis. For the lowest discharge voltage of 0.8 V, a surface electrolyte inter-phase (SEI) layer is observed and STEM/EELS results are compared with the Li-K edges obtained for various Li standard compounds (LiF, Li2CO3 and Li2O).  相似文献   

16.
The low loss region of an EEL spectrum (<50 eV) contains information about excitations of outer shell electrons and thus the electronic structure of a specimen which determines its optical properties. In this work, dedicated electron energy loss spectroscopy (EELS) methods for the experimental acquisition and analysis of spectra are described, which give improved information about the electronic structure near the bandgap region at a spatial resolution in the range of nanometers. For this purpose, we made use of a cold field emission scanning transmission electron microscope (STEM) equipped with a dedicated EELS system. This device provides a subnanometer electron probe and offers an energy resolution of 0.35 eV. Application of suitable deconvolution routines for removal of the zero loss peak extracts information on the bandgap region while the Kramers-Kronig transformation deduces the dielectric properties from the measured energy loss function. These methods have been applied to characterize the optical properties of wide-bandgap materials for the case of III-nitride compounds, which are currently the most promising material for applications on optoelectronic devices working in the blue and ultraviolet spectral range. The obtained results are in excellent agreement with experimental measurements by synchrotron ellipsometry and theoretical studies. The potential of the superior spatial resolution of EELS in a STEM is demonstrated by the analysis of dielectric properties of individual layers of heterostructures and individual defects within wurtzite GaN.  相似文献   

17.
Field emission gun (FEG) nanoprobe scanning electron transmission microscopy (STEM) techniques coupled with energy dispersive X-ray (EDX) and electron energy loss spectroscopy (EELS) are evaluated for the detection of the n-type dopant arsenic, in silicon semiconductor devices with nanometer-scale. Optimization of the experimental procedure, data extraction and the signal-to-noise ratio versus electron dose, show that arsenic detection below 0.1% should be possible. STEM EDX and EELS spectrum profiles have been quantified and compared with secondary ion mass spectrometry (SIMS) analyses which show a good agreement. In addition, the arsenic doping level found inside large and small epitaxial devices have been compared using STEM EDX-EELS profiling. The average doping level is found to be similar but variable interface segregation has been observed. Finally, STEM EDX arsenic mapping acquired in a BiCMOS transistor cross-section shows strong heterogeneities and segregation in the epitaxially grown emitter part.  相似文献   

18.
S. Koshiya  M. Terauchi  A.P. Tsai 《哲学杂志》2013,93(18):2309-2316
Chemical shifts of all constituent atoms for amorphous (Am), quasicrystalline (QC) and crystalline (Cryst) alloys of Al53Si27Mn20 were investigated for the first time by high energy-resolution electron energy-loss spectroscopy (EELS) and soft-X-ray emission spectroscopy (SXES). Among Al L-shell excitation EELS spectra of Am, QC and Cryst alloys, only QC alloy showed an apparent chemical shift to the larger binding energy side by 0.4?eV. In Al-Kα and Si-Kα emission SXES spectra of these alloys, only QC alloy showed a chemical shift to the larger binding energy side by 4?eV for Al-Kα and 6?eV for Si-Kα. These chemical shift values are comparable to those of corresponding metal oxides. This indicates a smaller amount of valence charge at Al and Si atomic sites in QC alloy. On the other hand, Mn-L SXES spectra did not show any chemical shift. Therefore, the decreased charge from Al and Si sites should be distributed between atomic sites, indicating the presence of covalent bonding nature for QC ordered alloy.  相似文献   

19.
In this study, the EELS results revealed the great sensitivity of InP compound submitted to Ar+ or N+ ions at low energy. The preliminary treatment of InP by the Ar+ ions was useful as part of the cleaning process of the surface. Further argon ions bombardment on cleaned InP led however to breaking of chemical bonds In–P, with desorption of phosphorus atoms and appearance of In metal distributed on InP. The damaged InP by Ar+ ions, constituted the diphase (In; InP) system of depth of about 30 Å, involving a superficial roughness. The In metal proportion on such a system was determined by a calculation method based on the experimental EELS spectra of pure In and InP.We submitted the heated and no heated system (In; InP) to nitrogen ions bombardment. The nitrogen reacted with the In metal to compensate the phosphorus vacancies so that InN species were formed. The heating of (In; InP) system at 450 °C, allowed the surface reconstruction with elimination of defects due to the structure and the roughness. The temperature also caused the coalescence of In metal towards the surface. Because of the physical stability of the interface of heated (In; InP) system, the nitrogen reacted with the outmost layers of In metal to form a homogeneous layer of InN of thickness estimated at 20 Å. We associated to the EELS the TRIM (Transport and Range of Ions in Matter) simulation method in order to show the mechanism of interaction Ar+ or N+ ions-InP and determine the disturbed depth as a function of the energy. The EELS alone was not able to give us with accuracy the disturbed depth of the target by these ions.  相似文献   

20.
Electron energy-loss spectroscopy (EELS) is used to analyze single-layered hexagonal boron-nitride with or without point defects. EELS profiles using a 0.1 nm probe clearly discriminate the chemical species of single atoms but show different delocalization of the boron and nitrogen K edges. A monovacancy at the boron site is unambiguously identified and the electronic state of its nearest neighboring nitrogen atoms is examined by energy-loss near edge fine structure analysis, which demonstrates a prominent defect state. Theoretical calculations suggest that the observed prepeak originates from the 1s to lowest unoccupied molecular orbital excitation of dangling nitrogen bonds, which is substantially lowered in energy with respect to the three coordinated nitrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号