首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ultrasonics》1986,24(1):25-30
Several techniques have recently been proposed to perform acoustic birefringence measurements, using off-axis SH-waves, in order to determine stresses in slightly anisotropic materials. These techniques tacitly assume that refraction effects, due to inhomogeneous stress distributions and/or local variations in material properties, are negligible. In this paper we investigate the conditions under which this assumption is valid.  相似文献   

2.
Inhomogeneity and anisotropy are intrinsic characteristics of daytime and nighttime turbulence in the atmospheric boundary layer. In the present paper, line-of-sight sound propagation through inhomogeneous, anisotropic turbulence with temperature and velocity fluctuations is considered. Starting from a parabolic equation and using the Markov approximation, formulas are derived for the correlation functions and variances of log-amplitude and phase fluctuations of a spherical sound wave. These statistical moments of a sound field are important for many practical applications in atmospheric acoustics. The derived formulas for the correlation functions and variances generalize those already known in the literature for two limiting cases: (a) homogeneous, isotropic turbulence, and (b) inhomogeneous, anisotropic turbulence with temperature fluctuations only. Furthermore, the formulas differ from those for the case of plane wave propagation. Using the derived formulas and Mann's spectral tensor of velocity fluctuations for shear-driven turbulence, the correlation functions and variances of log-amplitude and phase fluctuations are studied numerically. The results obtained clearly show that turbulence inhomogeneity and anisotropy significantly affect sound propagation in the atmosphere.  相似文献   

3.
This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65PMN-0.35PT/0.90PMN-0.10PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.  相似文献   

4.
5.
The effect of internal wave solitons on the sound field generated by a point source in a shallow sea is considered. In the framework of the theory of “horizontal rays and vertical modes,” the sound field pattern governed by the aforementioned hydrodynamic effect is investigated. It is shown that solitons can induce time-periodic focusing and defocusing of horizontal rays propagating at shallow angles to the internal wave front. This may result in the formation of “dynamical” horizontal sound channels, which, in its turn, results in considerable temporal fluctuations of the field along the acoustic track oriented along the internal wave front. For the sound field calculations, an approach is developed on the basis of the parabolic approximation in the horizontal plane and the mode representation in the vertical direction. The results obtained can be used for remote monitoring of internal wave packets in a shallow sea.  相似文献   

6.
Incidence of an acoustic wave upon a plane boundary between a liquid and a ferromagnetic crystal is considered. The ferromagnet is the Ni2+x+y Mn1−x Ga1−y Heusler alloy with a shape memory, which is in the region of the premartensite or martensite phase transition in temperature. The directions of propagation and polarization and the amplitudes of the reflected and transmitted quasilongitudinal and quasitransverse waves in the (110) plane of the crystal are determined. Starting from a certain critical angle of incidence, a longitudinal wave in the crystal becomes inhomogeneous and gliding along the boundary with an accompanying surface oscillation. In the vicinity of the phase transition point, this wave may be radiated into the crystal bulk. Proceeding from the experimental data by Trivisonno for ultrasonic velocities and absorption in a Ni2MnGa crystal, numerical estimates are obtained for the aforementioned acoustic effects.  相似文献   

7.
The intensity coherence function of time for partially saturated acoustic propagation through internal waves is calculated with a method that is improved over previous treatments. Two specific improvements are introduced: the usual expansion in (1/lambdaphi2) is carried out to a higher order, and then the terms of that expansion are calculated with a new perturbative method. The method is applied to propagation without a sound channel, for both phase-screen and continuous-medium cases. The validity of the new perturbative method is estimated by calculating the next order error terms. Accuracies at the few-percent level are found. The new analytic formulas are also corroborated with numerical integration. Finally, the method is applied to a specific ocean-acoustic experiment [Azores Fixed Acoustic Range (AFAR)]. In order to achieve good agreement with experiment it will be necessary to add an accurate treatment of the sound channel to the present perturbation method.  相似文献   

8.
Pseudo-Hermitian operators can be used in modeling electromagnetic wave propagation in stationary lossless media. We extend this method to a class of non-dispersive anisotropic media that may display loss or gain. We explore three concrete models to demonstrate the utility of our general results and reveal the physical meaning of pseudo-Hermiticity and quasi-Hermiticity of the relevant wave operator. In particular, we consider a uniaxial model where this operator is not diagonalizable. This implies left-handedness of the medium in the sense that only clockwise circularly polarized plane-wave solutions are bounded functions of time.  相似文献   

9.
Elastodynamic response of anisotropic laminate composite structures subjected to a force loading is evaluated based on the integral representations in terms of Green's matrices. Explicit and asymptotic expressions for guided waves generated by a given source are then obtained from those integrals by means of series expansions and the residue technique. Unlike to conventional modal expansions, such representations keep information about the source, giving an opportunity for a quantitative near- and far-field analysis of generated waves. An effective computer implementation is achieved by the use of fast and stable algorithms for the Green matrix, pole, and residue calculations. The potential of the model is demonstrated by examples of anisotropy manifestation in the directivity of radiated waves. The effect of main energy outflow in the direction of either upper- or inner-ply orientation depending on the source size and frequency is discussed.  相似文献   

10.
饶冰洁  刘圣  赵建林 《物理学报》2017,66(23):234207-234207
空间频率模式的光子带隙反映了光波在周期性结构中的线性传输特性.以这种线性传输特性为基础,研究了蜂巢光子晶格中光波的无衍射和反常折射.通过详细分析带隙结构第一通带上的衍射与折射特性,得出了光波发生反常衍射和折射的入射条件.匹配不同的入射条件,数值模拟了光波的无衍射传输和反常折射现象.结果表明:将入射光束的波矢设置在蜂巢晶格布里渊区中正常、反常衍射区的交界处,可使高斯光束沿x轴、y轴方向的衍射得到有效抑制;以多光束干涉场作为入射光场,可对蜂巢晶格进行模式匹配,激发第二布里渊区的传输模式;进一步将模式匹配后入射光场的波矢设置在反常折射区,可实现光波的反常折射.  相似文献   

11.
Shock wave and detonation propagation through U-bend tubes   总被引:4,自引:0,他引:4  
The objective of the research outlined in this paper is to provide experimental and computational data on initiation, propagation, and stability of gaseous fuel–air detonations in tubes with U-bends implying their use for design optimization of pulse detonation engines (PDEs). The experimental results with the U-bends of two curvatures indicate that, on the one hand, the U-bend of the tube promotes the shock-induced detonation initiation. On the other hand, the detonation wave propagating through the U-bend is subjected to complete decay or temporary attenuation followed by the complete recovery in the straight tube section downstream from the U-bend. Numerical simulation of the process reveals some salient features of transient phenomena in U-tubes.  相似文献   

12.
The negative refraction of electromagnetic waves in photonic crystals was recently demonstrated experimentally, and the physical properties were analyzed. Microsuperlenses based on two-dimensional photonic crystals were designed and the subwavelength images were observed. In this review, after providing a brief history of the research related to the above phenomena, we will summarize our research works in this field including the method of creating a negative refraction region, generating an absolute negative refraction, the focusing of unpolarized electromagnetic waves, and the effect of interface and disorder on the image by the two-dimensional photonic crystal flat lens. The discussion on the negative refraction and the focusing by high symmetric quasicrystals is also presented.  相似文献   

13.
Sound propagation through a forest is affected by the microclimate in the canopy, scattering by trunks and stems, and ground reflection. Each of these effects is such a strong contributor to the attenuation of sound that mutual interactions between the phenomena could become important. A sound propagation model for use in a forest has been developed that incorporates scattering from trunks and branches and atmospheric refraction by modifying the effective wave number in the Green's function parabolic equation model. The ground effect for a hard-backed pine straw layer is approximated as a local reaction impedance condition. Comparisons to experimental data are made for frequencies up to 4,200 Hz. Cumulative influences of the separate phenomena are examined. The method developed in this paper is compared to previously published methods. The overall comparison with spectral transmission data is good, suggesting that the model captures the necessary details.  相似文献   

14.
Castaings M  Hosten B 《Ultrasonics》2000,38(1-8):781-786
Electrostatic, air-coupled, ultrasonic transducers are used to generate and detect plane waves in viscoelastic, isotropic or anisotropic solid plates. The through-transmitted field is measured and compared to numerical predictions. An inversion scheme is then applied for identifying the values of the complex Cij which are representative of the viscoelasticity properties of the materials. The issue of this work is a contact-free, ultrasonic technique for material characterisation.  相似文献   

15.
This study presents the electromagnetic wave propagation through the frequency-dispersive and lossy double-negative slab embedded between two different semi-infinite media. The double-negative slab is realized by using two models, the Lorentz and Drude medium models. The properties and the required equations for the frequency-dispersive and lossy double-negative slab, the Lorentz medium and Drude medium are given in detail. After the construction of the problem, the reflection and transmission coefficients are derived for both TE and TM waves. Then, the reflected, transmitted and loss powers are determined using these coefficients. Finally, in the numerical results, the mentioned powers for TE and TM waves are computed and illustrated as a function of the incidence angle, the frequency and the slab thickness when the damping frequency changes.  相似文献   

16.
Plasmon resonances and extraordinary light scatterings of a nanoparticle with radial anisotropy are studied and summarized. The coupling between localized surface plasmons and far‐field quantities is discussed. It is found that the presence of radial anisotropy redistributes the localization of plasmons and also results in certain novel phenomena in the far zone, which provide the possibility of scattering control such as electromagnetic transparency, enhanced scattering cross section, etc. The nonlinear optical response is explored in order to yield deeper physical insight into the interaction between plasmons and incident light.  相似文献   

17.
Excitation of a magnetostatic surface wave beam in a thin magnetic film is studied theoretically and experimentally. Unique features in the propagation of such a beam are found, and the laws of beam reflection and refraction are studied. It is shown that there are significant features from Snell's and Euclid's law for such beams.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 67–75, November, 1988.  相似文献   

18.
19.
20.
The propagation of nonparaxial, partially coherent fields may be modeled in many ways. The standard techniques of Huygens-type propagation integrals or plane-wave decompositions require quadruple oscillatory integrals that carry a significant computational cost. Two alternative, computationally efficient methods for such modeling are presented here. One uses a discrete nonparaxial basis expansion of the field, while the other uses Wigner functions for nonparaxial fields. Two possible nonparaxial generalizations of Gaussian Schell-model beams are presented and used to demonstrate the utility of the methods by computing the spatial distribution of several recently proposed definitions of the degree of polarization of a nonparaxial field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号