首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of water molecule adsorption on the surface of (5,0) zigzag boron nitride nanotube was studied by density functional theory calculations. Geometrical optimizations were carried out at the B3LYP/6-31+G* level of theory. Six different configurations of water molecule(s) adsorption process including monomer (1WB and 1WN), dimer (2WB, 2WNN, and 2WBN), and trimer (3WB) clusters were obtained. The strengths of interactions were analyzed by the equilibrium geometries, binding energies, and charge transfer. The natural bonding analysis was also performed to investigate electronic properties. The results reveal that the adsorption of water is more favorable as the water cluster size increases.  相似文献   

2.
The chemical adsorption of H atoms on an (8,0) zigzag boron nitride nanotube is studied using the density functional theory with the supercell method. One to four H atoms per 32 B and 32 N are considered. The results show that H atoms prefer to adsorb on the top sites of adjacent B and N atoms to form an armchair chain along the tube axis. An even-odd oscillation behavior of the adsorption energy of H atoms on the tube is found, and the average adsorption energy of even H atoms is obviously bigger than that of odd H atoms. The results can be understood with the frontier orbital theory. Based on this adsorption behavior, several high-symmetric structures of H adsorbed boron nitride nanotubes with 50% and 100% coverages are studied. The pairs of lines' pattern with 50% coverage has the biggest average adsorption energy per H(2) among the chosen configurations, corresponding to approximately 4 wt % hydrogen storage.  相似文献   

3.
4.
We simulate the phase transition processes of aligned crystalline boron nitride (BN) nanotube bundles under transverse pressure, and investigate the phase transition mechanism and transition conditions. The antiparallel polar bonds rule, associated with the interaction between the tubes, is demonstrated to be crucial to such phase transitions. And the curvature of the tubes can greatly affect the phase transition behavior. We discover a unique sp(2)-sp(3)-sp(2) transition and a series of new BN crystal phases including a novel porous sheet-stacking-up form with the lightest density (2.01 g/cm(3)), which could be used in highly efficient energy storage.  相似文献   

5.
Carbon dioxides (CO(2)) emitted from large-scale coal-fired power stations or industrial manufacturing plants have to be properly captured to minimize environmental side effects. From results of ab initio calculations using plane waves [PAW-PBE] and localized atomic orbitals [ONIOM(wB97X-D/6-31G*:AM1)], we report strong CO(2) adsorption on boron antisite (B(N)) in boron-rich boron nitride nanotube (BNNT). We have identified two adsorption states: (1) A linear CO(2) molecule is physically adsorbed on the B(N), showing electron donation from the CO(2) lone-pair states to the B(N) double-acceptor state, and (2) the physisorbed CO(2) undergoes a carboxylate-like structural distortion and C═O π-bond breaking due to electron back-donation from B(N) to CO(2). The CO(2) chemisorption energy on B(N) is almost independent of tube diameter and, more importantly, higher than the standard free energy of gaseous CO(2) at room temperature. This implies that boron-rich BNNT could capture CO(2) effectively at ambient conditions.  相似文献   

6.
7.
Boron nitride nanotube (BNNT) films were synthesized by combining ball milling and thermal chemical vapor deposition (CVD) using nano-Fe3O4 as a catalyst. The as-produced BNNTs have a bamboo-like structure and have a diameter in the range of 50~200 nm with an average length of more than 40 mm. Moreover, BNNT nanojunction structures were synthesized. The structure and morphology of the BNNTs were characterized by XRD, SEM, TEM and HRTEM. The possible growth mechanism of BNNTs and BNNT nanojunction structures were proposed. Though the BNNT films were observed, out of our expectation, BNNTs with thin tube wall and small average diameter have not been achieved, and this could be mainly ascribed to the aggregation of the nanoparticle catalyst, resulting in greater catalyst particles during the process of BNNT growth. This result will provide a promising approach to obtain the desired shape of BNNTs and produce branched junctions of BNNTs.  相似文献   

8.
Adsorption of transition atoms on a (8,0) zigzag single-walled boron nitride (BN) nanotube has been investigated using density-functional theory methods. Main focuses have been placed on configurations corresponding to the located minima of the adsorbates, the corresponding binding energies, and the modified electronic properties of the BN nanotubes due to the adsorbates. We have systemically studied a series of metal adsorbates including all 3d transition-metal elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) and two group-VIIIA transition-metal elements (Pd and Pt). We found that many transition-metal atoms can be chemically adsorbed on the outer surface of the BN nanotubes and that the adsorption process is typically exothermic. Upon adsorption, the binding energies of the Sc, Ti, Ni, Pd, and Pt atoms are relatively high (>1.0 eV), while those of V, Fe, and Co atoms are modest, ranging from 0.62 to 0.92 eV. Mn atom forms a weak bond with the BN nanotube, while Zn atom cannot be chemically adsorbed on the BN nanotube. In most cases, the adsorption of transition-metal atoms can induce certain impurity states within the band gap of the pristine BN nanotube, thereby reducing the band gap. Most metal-adsorbed BN nanotubes exhibit nonzero magnetic moments, contributed largely by the transition-metal atoms.  相似文献   

9.
Hydrogen uptake in boron nitride nanotubes at room temperature   总被引:2,自引:0,他引:2  
Hydrogen uptake capacities of 1.8 and 2.6 wt % were obtained on BN multiwalled nanotubes and bamboo-like nanotubes, respectively, under approximately 10 MPa at room temperature. The preliminary results show that chemical interactions mainly take place between hydrogen and BN. Taking into consideration the uniform semiconducting electronic property and ultimate stable chemical and thermal stability, BN nanotubes may exhibit some interesting possibilities in storing hydrogen. This will also provide some viewpoints on designing the carbon-based hydrogen storage system.  相似文献   

10.
The structural characterizations and electronic properties of aligned armchair single-walled boron nitride nanotube (BNNT) bundles are theoretically investigated. In the spontaneous bundling process, the cylindrical shapes of bundled BNNTs are preserved all along, whereas their diameters expand, then shrink, and return back to the initial dimensions. Owing to the nonuniform distribution of positive and negative charges among BNNTs, the multipole interaction in bundles is completely dependent upon the chirality of each BNNT and the arrangement of bundled BNNTs. The effect of intertube coupling on the dispersions of BNNT bundles is demonstrated. Our systematical simulations might be helpful for the understanding of potential applications of BNNT bundles in the nanometer manufacturing techniques such as doping, adsorption, and derivative synthesis.  相似文献   

11.

Abstract  

We performed density functional theory (DFT) calculations to investigate the properties of electronic structures of representative armchair and zigzag silicon carbide nanotubes (SiCNTs). The model structures were optimized and the NMR parameters were calculated at the sites of silicon-29 and carbon-13 atoms in these structures. Our results indicated that different electronic environments could be detected by using the atoms of nanotubes in which the atoms of tips, especially for zigzag SiCNT, exhibit distinctive properties among other atoms.  相似文献   

12.
Boron nitride nanotubes (BNNTs) have been reported to possess superior water permeation properties. In this work, using molecular dynamics simulations with partial charges, capturing BNNT polarization effects obtained from quantum calculations, we found that Stone-Wales (SW) defects in a (5,5) BNNT result in phase transition of water, i.e., a transition between liquid-like phase and vapor-like phase was observed. The 90 degree rotation of the B-N bond, SW transformation, in an SW-defective (5,5) BNNT results in breaking of hydrogen bonding with neighboring water molecules and leads to the existence of a vapor-like phase near the SW defect. Water transport rate was evaluated by measuring translocation time. Water in an SW-defective (5,5) BNNT has fewer translocation events, longer translocation time, and a higher axial diffusion coefficient compared to water in a nondefective (5,5) BNNT.  相似文献   

13.
14.
Density functional theory (DFT) calculations have been performed to investigate the electronic and structural properties of sulfur (S) terminated models of zigzag boron nitride (BN) nanotube. Four models including pristine, boron (B) tip terminated by S, nitrogen (N) tip terminated by S, and both of B and N tips terminated by S have been considered for optimizations and chemical shielding (CS) parameters calculations. The results indicate that the B–N bond lengths do not detect any changes due to the S-termination but the band gaps and dipole moments detect notable changes especially for the model of the N-tip terminated by the S atoms. The CS parameters also indicate that the atoms of the models are divided into layers with similar parameters in each layer. In the model of the B-tip terminated by the S atoms, the CS parameters indicate strong chemical bonding of N- and S-layers; however, only some attractions between the B- and S-layers of the model of the N-tip terminated by the S atoms have been detected. In the model of B and N tips terminated by the S atoms, the most significant changes among the models are detected.  相似文献   

15.
Multiwalled boron nitride nanotubes (BNNTs) functionalized with Fe(3)O(4) nanoparticles (NPs) were used for arsenic removal from water solutions. Sonication followed by a heating process was developed to in situ functionalize Fe(3)O(4) NPs onto a tube surface. A batch of adsorption experiments conducted at neutral pH (6.9) and room temperature (25 °C) and using the developed nanocomposites revealed effective arsenic (V) removal. The Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were measured for a range of As(V) initial concentrations from 1 to 40 mg/L under the same conditions. The equilibrium data well fitted all isotherms, indicating that the mechanism for As(V) adsorption was a combination of chemical complexation and physical electrostatic attraction with a slight preference for chemisorption. The magnetite NPs functionalized on BNNTs led to a simple and rapid separation of magnetic metal-loaded adsorbents from the treated water under an external magnetic field.  相似文献   

16.
We have studied non-covalent functionalization of boron nitride nanotubes (BNNTs) with benzene molecule and with seven other different heterocyclic aromatic rings (furan, thiophene, pyrrole, pyridine, pyrazine, pyrimidine, and pyridazine, respectively). A hybrid density functional theory (DFT) method with the inclusion of dispersion correction is employed. The structural and electronic properties of the functionalized BNNTs are obtained. The DFT calculation shows that upon adsorption to the BNNT, the center of aromatic rings tend to locate on top of the nitrogen site. The trend of adsorption energy for the aromatic rings on the BNNTs shows marked dependence on different intermolecular interactions, including the dispersion interaction (area of the delocalized π bond), the dipole-dipole interaction (polarization), and the electrostatic repulsion (lone pair electrons). The DFT calculation also shows that non-covalent functionalization of BNNTs with aromatic rings can give rise to new impurity states within the band gap of pristine BNNTs, suggesting possible carrier doping of BNNTs via selective adsorption of aromatic rings.  相似文献   

17.
The geometrical and electronic structures of two isomers (1 and2) of the polyhedral boron nitride molecule, B12N12, have been calculated using the MNDO method. Structure1 having the form of a truncated octahedron is more energetically preferable (ΔH f 0=−128 kcal mol−1) than isomer2, which hasC 6v symmetry. The equilibrium geometries of the N6B6(CH2)6 isomers (3 and4), which simulate fragments of structure2, have been calculated. The stabilization mechanism of the N6 nitrogen cluster (hexaazabenzene) in polyhedral structures is discussed. The parameters calculated for molecules1 and2 have been correlated with the corresponding characteristics of their carbon analogs. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1712–1714, October, 1993.  相似文献   

18.
A density functional theory study is carried out to investigate the geometries and electronic structure of pristine and carbon-doped (8, 0) single-walled boron nitride nanotubes (BNNTs). In order to understand the effect of impurities or doping on (8, 0) single-walled BNNT, we simulated C-doping in six different ways. Geometry optimizations reveal that in the considered models, B–N bond lengths are not significantly influenced by C-doping. Based on the quantum theory of atoms in molecules analysis, charge density accumulation for axial B–N bond critical points (BCPs) of pristine BNNT is slightly larger than zigzag ones. However, due to C-doping at the B- or N-tips, the evaluated electron density tends to decrease slightly at both axial and zigzag B–N BCPs. Besides, results indicate that influence of C-doping on properties of the (8, 0) BNNT could be also detected by values of chemical shielding isotropy (σ iso) and anisotropy (Δσ).  相似文献   

19.
Erickson SL  Conrad FJ 《Talanta》1971,18(10):1066-1070
Improved techniques are described for the determination of boron and nitrogen in pure boron nitride. Controlled fusion of boron nitride with sodium carbonate in a muffle furnace is followed by a potentiometric titration of the boric acid. A special quartz vessel is described for the determination of nitrogen. The boron nitride is fused with sodium hydroxide and the resulting ammonia is swept into a receiver and titrated with standard hydrochloric acid. Boron and nitrogen values with their standard deviation are given for a typical pure boron nitride.  相似文献   

20.
We report for the first time that proteins are immobilized on boron nitride nanotubes. It is found that there is a natural affinity of a protein to BNNT; this means that it can be immobilized on BNNT directly, without usage of an additional coupling reagent. For the most effective immobilization, noncovalently functionalized BNNTs should be used. The effect of immobilization was studied using high-resolution transmission electron microscopy and energy dispersion spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号