首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase fidelity is of immense biological importance due to the fundamental requirement for accurate DNA synthesis in both replicative and repair processes. Subtle hydrogen-bonding networks between DNA polymerases and their primer/template substrates are believed to have impact on DNA polymerase selectivity. We show that deleting defined interactions of that kind by rationally designed hydrophobic substitution mutations can result in a more selective enzyme. Furthermore, a single-atom replacement within the DNA substrate through chemical modification, which leads to an altered acceptor potential and steric demand of the DNA substrate, further increased the selectivity of the developed systems. Accordingly, this study about the impact of hydrophobic alterations on DNA polymerase selectivity--enzyme and substrate wise--further highlights the relevance of shape complementary and polar interactions on DNA polymerase selectivity.  相似文献   

2.
As part of an effort to develop unnatural base pairs that are stable and replicable in DNA, we examined the ability of five different polymerases to replicate DNA containing four different unnatural nucleotides bearing predominantly hydrophobic nucleobase analogs. The unnatural pairs were developed based on intensive studies using the Klenow fragment of DNA polymerase I from E. coli (Kf) and found to be recognized to varying degrees. The five additional polymerases characterized here include family A polymerases from bacteriophage T7 and Thermus aquaticus, family B polymerases from Thermococcus litoralis and Thermococcus 9(o)N-7, and the family X polymerase, human polymerase beta. While we find that some aspects of unnatural base pair recognition are conserved among the polymerases, for example, the pair formed between two d3FB nucleotides is typically well recognized, the detailed recognition of most of the unnatural base pairs is generally polymerase dependent. In contrast, we find that the pair formed between d5SICS and dMMO2 is generally well recognized by all of the polymerases examined, suggesting that the determinants of efficient and general recognition are contained within the geometric and electronic structure of these unnatural nucleobases themselves. The data suggest that while the d3FB:d3FB pair is sufficiently well recognized by several of the polymerases for in vitro applications, the d5SICS:dMMO2 heteropair is likely uniquely promising for in vivo use. T7-mediated replication is especially noteworthy due to strong mispair discrimination.  相似文献   

3.
DNA polymerases catalyze the insertion of a nucleoside triphosphate into the growing polymer chain using the template strand as a guide. Numerous factors such as hydrogen bonding interactions, base-stacking contributions, and desolvation play important roles in controlling the efficiency and fidelity of this process. We previously demonstrated that 5-nitro-indolyl-2'-deoxyriboside triphosphate, a non-natural nucleobase with enhanced base-stacking properties, was more efficiently inserted opposite a non-templating DNA lesion compared to natural templating nucleobases (E. Z. Reineks and A. J. Berdis, Biochemistry, 2004, 43, 393-404). The catalytic enhancement was proposed to reflect increased base-stacking interactions of the non-natural nucleobase with the polymerase and DNA. However, the effects of desolvation could not be unambiguously refuted. To further address the contributions of base stacking and desolvation during translesion DNA replication, we synthesized indolyl-2'-deoxyriboside triphosphate, a nucleobase devoid of nitro groups, and measured its efficiency of enzymatic insertion into modified and unmodified DNA. Removal of the nitro group reduces the catalytic efficiency for insertion opposite an abasic site by 3600-fold. This results from a large decrease in the rate of polymerization (similar 450-fold) coupled with a modest decrease in binding affinity (similar 8-fold). Since both non-natural nucleobases show the same degree of hydrophobicity, we attribute this reduction to the loss of base-stacking contributions rather than desolvation capabilities. Indolyl-2'-deoxyriboside triphosphate can also be inserted opposite natural nucleobases. Surprisingly, the catalytic efficiency for insertion is nearly identical to that measured for insertion opposite an abasic site. These data are discussed within the context of pi-electron interactions of the incoming nucleobase with the polymerase:DNA complex. Despite this lack of insertion selectivity, the polymerase is unable to extend beyond the non-natural nucleobase. This result indicates that indolyl-2'-deoxyriboside triphosphate acts as an indiscriminate chain terminator of DNA synthesis that may have unique therapeutic applications.  相似文献   

4.
DNA polymerase selectivity is crucial for the survival of any living species, yet varies significantly among different DNA polymerases. Errors within DNA polymerase-catalyzed DNA synthesis result from the insertion of noncanonical nucleotides and extension of misaligned DNA substrates. The substrate binding characteristics among DNA polymerases are believed to vary in properties such as shape and tightness of the binding pocket, which might account for the observed differences in fidelity. Here, we employed 4'-alkylated nucleotides and primer strands bearing 4'-alkylated nucleotides at the 3'-terminal position as steric probes to investigate differential active site properties of human DNA polymerase beta (Pol beta) and the 3'-->5'-exonuclease-deficient Klenow fragment of E. coli DNA polymerase I (KF(exo-)). Transient kinetic measurements indicate that both enzymes vary significantly in active site tightness at both positions. While small 4'-methyl and -ethyl modifications of the nucleoside triphosphate perturb Pol beta catalysis, extension of modified primer strands is only marginally affected. Just the opposite was observed for KF(exo-). Here, incorporation of the modified nucleotides is only slightly reduced, whereas size augmentation of the 3'-terminal nucleotide in the primer reduces the catalytic efficiency by more than 7000- and 260,000-fold, respectively. NMR studies support the notion that the observed effects derive from enzyme substrate interactions rather than inherent properties of the modified substrates. These findings are consistent with the observed differential capability of the investigated DNA polymerases in fidelity such as processing misaligned DNA substrates. The results presented provide direct evidence for the involvement of varied steric effects among different DNA polymerases on their fidelity.  相似文献   

5.
Genetic information is encoded by, but potentially not limited to, a four-letter alphabet. A variety of predominantly hydrophobic nucleobase analogues that form self-pairs in DNA have been examined as third base pair candidates. For example, the PICS self-pair is both stable in duplex DNA and synthesized by some wild-type polymerases with reasonable efficiency. These efforts to expand the genetic code are expected to be facilitated by optimizing both the unnatural nucleobase analogues and the polymerases that replicate them. Here, we report the use of an activity-based selection system to evolve a DNA polymerase that more efficiently replicates DNA containing the PICS self-pair. The selection system is based on the co-display on phage of DNA polymerase libraries and a DNA substrate containing the self-pair. Only polymerases that accept the unnatural substrate incorporate a biotin-dUTP to the attached primer and may then be isolated on a streptavidin solid support. A mutant of Sf polymerase, P2, was evolved which both inserts dPICSTP opposite dPICS in the template and extends the unnatural primer terminus by incorporation of the next correct natural dNTP, where the parental enzyme catalyzes neither step at detectable rates. P2 was found to be a triple mutant of Sf, with the mutations F598I, I614F, and Q489H. The evolved properties of P2, as well as the observed mutations, are consistent with an increased affinity for the DNA primer-template containing the self-pair.  相似文献   

6.
Nucleic acid polymerases are the most important reagents in biotechnology. Unfortunately, their high substrate specificity severely limits their applications. Polymerases with tailored substrate repertoires would significantly expand their potential and allow enzymatic synthesis of unnatural polymers for in vivo and in vitro applications. For example, the ability to synthesize 2'-O-methyl-modified polymers would provide access to materials possessing properties that make them attractive for biotechnology and therapeutic applications, but unfortunately, no known polymerases are capable of efficiently accepting these modified substrates. To evolve such enzymes, we have developed an activity-based selection method which isolates polymerase mutants with the desired property from libraries of the enzyme displayed on phage. In this report, mutants that could efficiently synthesize an unnatural polymer from 2'-O-methyl ribonucleoside triphosphates were immobilized and isolated by means of their activity-dependent modification of a DNA oligonucleotide primer attached to the same phage particle. In each case, directed evolution resulted in relocating a critical side chain to a different position in the polypeptide, thus re-engineering the overall active site while preserving critical protein-DNA interactions. Remarkably, one evolved polymerase is shown to incorporate the modified substrates with an efficiency and fidelity equivalent to that of the wild-type enzyme with natural substrates.  相似文献   

7.
Certain DNA polymerases, such as ?29 DNA polymerase, can isothermally copy the sequence of a circular template round by round in a process known as rolling circle amplification (RCA), which results in super‐long single‐stranded (ss) DNA molecules made of tandem repeats. The power of RCA reflects the high processivity and the strand‐displacement ability of these polymerases. In this work, the ability of ?29DNAP to carry out RCA over circular templates containing a protein‐binding DNA aptamer sequence was investigated. It was found that protein–aptamer interactions can prevent this DNA polymerase from reading through the aptameric domain. This finding indicates that protein‐binding DNA aptamers can form highly stable complexes with their targets in solution. This novel observation was exploited by translating RCA arrest into a simple and convenient colorimetric assay for the detection of specific protein targets, which continues to showcase the versatility of aptamers as molecular recognition elements for biosensing applications.  相似文献   

8.
DNA polymerase selectivity often varies significantly depending on the DNA polymerase. The origin of this varying error propensity is elusive. It is assumed that DNA polymerases form nucleotide binding pockets that differ in properties such as shape and tightness. We tested this prediction and studied HIV-1 RT by employment of size-augmented nucleotides and site-directed mutagenesis of the enzyme. New valuable insights into the mechanism of DNA polymerase fidelity were obtained. The presented study provides experimental evidence that variations of steric constraints within the nucleotide binding pocket of at least two DNA polymerases cause variations in nucleotide incorporation selectivity. Thus, our results support the concept of active site tightness as a causative in differential fidelity among DNA polymerases.  相似文献   

9.
An intrastrand cross-link lesion, in which two neighboring nucleobases are covalently tethered, has been site-specifically synthesized into defined sequence oligonucleotides in order to perform in vitro replication studies using either bacterial replicative or translesional synthesis polymerases. The investigated tandem base lesion that involves a cross-link between the methylene group of thymine and the C8 of an adjacent guanine residue has been prepared by UV-photolysis under anaerobic condition of the photolabile precursor 5-(phenylthiomethyl)-2'-deoxyuridine that has been site-specifically incorporated into a 9-mer oligonucleotide. After ligation, the lesion-containing modified oligonucleotide was used as a DNA template in primer extension reactions catalyzed by several DNA polymerases including the fragment Klenow exo-(Kf-) of E. coli polymerase I, the Thermus aquaticus polymerase (Taq pol) and the E. coli translesional DNA polymerase Pol IV (dinB). It was found that the primer extension reaction was stopped after the incorporation of the correct nucleotide dAMP opposite the 3'-thymine residue of guanine(C8-CH2) thymine lesion by Kf- and Pol IV; however it was noted that the efficiency of the nucleotide incorporation was reduced. In contrast, the Taq polymerase was totally blocked at the nucleotide preceding the tandem lesion. These results are strongly suggestive that the present intrastrand cross-link lesion, if not repaired, would constitute a blocking lesion for prokaryotic DNA polymerases, being likely lethal for the cell.  相似文献   

10.
To broaden the applicability of chemically modified DNAs in nano- and biotechnology, material science, sensor development, and molecular recognition, strategies are required for introducing a large variety of different modifications into the same nucleic acid sequence at once. Here, we investigate the scope and limits for obtaining functionalized dsDNA by primer extension and PCR, using a broad variety of chemically modified deoxynucleotide triphosphates (dNTPs), DNA polymerases, and templates. All natural nucleobases in each strand were substituted with up to four different base-modified analogues. We studied the sequence dependence of enzymatic amplification to yield high-density functionalized DNA (fDNA) from modified dNTPs, and of fDNA templates, and found that GC-rich sequences are amplified with decreased efficiency as compared to AT-rich ones. There is also a strong dependence on the polymerase used. While family A polymerases generally performed poorly on "demanding" templates containing consecutive stretches of a particular base, family B polymerases were better suited for this purpose, in particular Pwo and Vent (exo-) DNA polymerase. A systematic analysis of fDNAs modified at increasing densities by CD spectroscopy revealed that single modified bases do not alter the overall B-type DNA structure, regardless of their chemical nature. A density of three modified bases induces conformational changes in the double helix, reflected by an inversion of the CD spectra. Our study provides a basis for establishing a generally applicable toolbox of enzymes, templates, and monomers for generating high-density functionalized DNAs for a broad range of applications.  相似文献   

11.
The emergence of unnatural DNA bases provides opportunities to demystify the mechanisms by which DNA polymerases faithfully decode chemical information on the template. It was previously shown that two unnatural cytosine bases (termed “M‐fC” and “I‐fC”), which are chemical labeling adducts of the epigenetic base 5‐formylcytosine, can induce C‐to‐T transition during DNA amplification. However, how DNA polymerases recognize such unnatural cytosine bases remains enigmatic. Herein, crystal structures of unnatural cytosine bases pairing to dA/dG in the KlenTaq polymerase‐host–guest complex system and pairing to dATP in the KlenTaq polymerase active site were determined. Both M‐fC and I‐fC base pair with dA/dATP, but not with dG, in a Watson–Crick geometry. This study reveals that the formation of the Watson–Crick geometry, which may be enabled by the A‐rule, is important for the recognition of unnatural cytosines.  相似文献   

12.
13.
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5‐chloro‐2′‐deoxyuridine, 7‐deaza‐2′‐deoxyadenosine, 5‐fluoro‐2′‐deoxycytidine, and 7‐deaza‐2′deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo‐) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.  相似文献   

14.
To study the DNA synthesis mechanism of Sulfolobus acidocaldarius, a thermophilic species from Crenarchaeota, two DNA polymerases of B family(polB1 and polB3), and one DNA polymerase of Y family(polIV) were recombinantly expressed, purified and biochemically characterized. Both DNA polymerases polB1(Saci_1537) and polB3(Saci_0074) possessed DNA polymerase and 3' to 5' exonuclease activities; however, both the activities of B3 were very inefficient in vitro. The polIV(Saci_0554) was a polymerase, not an exonuclease. The activities of all the three DNA polymerases were dependent on divalent metal ions Mn2+ and Mg2+. They showed the highest activity at pH values ranging from 8.0 to 9.5. Their activities were inhibited by KCl with high concentration. The optimal reaction temperatures for the three DNA polymerases were between 60 and 70℃. Deaminated bases dU and dI on DNA template strongly hindered primer extension by the two DNA polymerases of B family, not by the DNA polymerase of Y family. DNA polymerase of Y Family bypassed the two AP site analogues dSpacer and propane on template more easily than DNA polymerases of B family. Our results suggest that the three DNA polymerases coordinate to fulfill various DNA synthesis in Sulfolobus acidocaldarius cell.  相似文献   

15.
DNA polymerases are enzymes responsible for the synthesis of DNA from nucleotides. Understanding their molecular fundamentals is a prerequisite for elucidating their aberrant activities in diseases such as cancer. Here we have carried out ab initio quantum mechanical/molecular mechanical (QM/MM) studies on the nucleotidyl-transfer reaction catalyzed by the lesion-bypass DNA polymerase IV (Dpo4) from Sulfolobus solfataricus, with template guanine and Watson-Crick paired dCTP as the nascent base pair. The results suggested a novel water-mediated and substrate-assisted (WMSA) mechanism: the initial proton transfer to the alpha-phosphate of the substrate via a bridging crystal water molecule is the rate-limiting step, the nucleotidyl-transfer step is associative with a metastable pentacovalent phosphorane intermediate, and the pyrophosphate leaving is facilitated by a highly coordinated proton relay mechanism through mediation of water which neutralizes the evolving negative charge. The conserved carboxylates, which retain their liganding to the two Mg2+ ions during the reaction process, are found to be essential in stabilizing transition states. This WMSA mechanism takes specific advantage of the unique structural features of this low-fidelity lesion-bypass Y-family polymerase, which has a more spacious and solvent-exposed active site than replicative and repair polymerases.  相似文献   

16.
The ability of DNA polymerases to maintain the integrity of the genome even after it has been structurally altered is vital. There is considerable interest in determining the structural properties of the DNA template that polymerases recognize when determining which nucleotide to add to a nascent strand. Mechanistic, synthetic, and structural chemistries have been used to study how DNA polymerase activity is affected by size, shape, pi-stacking, and hydrogen bonds of the template molecules. Herein, we probe the structural aspects of abasic lesions that result in their distinct coding potential in Escherichia coli despite lacking a Watson-Crick base. In particular, we investigate why bypass of 2-deoxyribonolactone (L) results in significant amounts of dG incorporation opposite the lesion, whereas other abasic lesions (e.g., AP) adhere to the "A-rule". Experiments using synthetic analogues reveal that DNA polymerase V bypasses L and increased levels of dG incorporation result from a hydrogen bonding interaction between the carbonyl oxygen and dG. These results show that a DNA polymerase utilizes hydrogen bonding as one structural parameter when decoding an abasic lesion.  相似文献   

17.
18.
19.
Enzymatic reactions typically involve complex dynamics during substrate binding, conformational rearrangement, chemistry, and product release. The noncovalent steps provide kinetic checkpoints that contribute to the overall specificity of enzymatic reactions. DNA polymerases perform DNA replication with outstanding fidelity by actively rejecting noncognate nucleotide substrates early in the reaction pathway. Substrates are delivered to the active site by a flexible fingers subdomain of the enzyme, as it converts from an open to a closed conformation. The conformational dynamics of the fingers subdomain might also play a role in nucleotide selection, although the precise role is currently unknown. Using single-molecule F?rster resonance energy transfer, we observed individual Escherichia coli DNA polymerase I (Klenow fragment) molecules performing substrate selection. We discovered that the fingers subdomain actually samples through three distinct conformations--open, closed, and a previously unrecognized intermediate conformation. We measured the overall dissociation rate of the polymerase-DNA complex and the distribution among the various conformational states in the absence and presence of nucleotide substrates, which were either correct or incorrect. Correct substrates promote rapid progression of the polymerase to the catalytically competent closed conformation, whereas incorrect nucleotides block the enzyme in the intermediate conformation and induce rapid dissociation from DNA. Remarkably, incorrect nucleotide substrates also promote partitioning of DNA to the spatially separated 3'-5' exonuclease domain, providing an additional mechanism to prevent misincorporation at the polymerase active site. These results reveal the existence of an early innate fidelity checkpoint, rejecting incorrect nucleotide substrates before the enzyme encloses the nascent base pair.  相似文献   

20.
Base excision repair (BER) is the major mechanism for the correction of damaged nucleobases resulting from the alkylation and oxidation of DNA. The first step in the BER pathway consists of excision of the abnormal base by several specific DNA N-glycosylases. A decrease in BER activity was found to be related to an increased risk of carcinogenesis and aging. To investigate BER activities we set up a new device for DNA repair analysis based on surface plasmon resonance imaging (SPRi). Oligonucleotides bearing an abnormal nucleoside, namely 8-oxo-7,8-dihydro-2'-deoxyguanosine and (5'S)-5',8-cyclopurine-2'-deoxynucleoside, were grafted by a pyrrole electro-copolymerization process on a glass prism coated with a gold layer. The latter label-free DNA sensor chip permits the detection of N-glycosylase/AP-lyase activity as well as the binding of repair proteins to DNA damage without cleavage activity. Thus, the Fapy DNA N-glycosylase (Fpg) protein is shown as expected to bind and then cleave its natural substrate, namely 8-oxo-7,8-dihydro-guanine, together with the resulting abasic site. Using the current SPR imaging-based DNA array we observed an original binding activity of Fpg towards the (5'S)-5',8-cyclodAdenosine residue. These results altogether show that SPR imaging may be used to simultaneously and specifically detect recognition and excision of several damaged DNA nucleobases, and constitutes an interesting technique to screen inhibitors of DNA repair proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号