首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Let G be a finite solvable group and A a subgroup of Aut G such that ¦G¦ and ¦A¦ are coprime. A conjecture states: The nilpodent length of G is bounded by terms depending only on A and the fixed point group GA={g∈G¦gA=g}. For abelian, nilpotent or solvable A various bounds are known. In this paper we study the nonsolvable case and prove the conjecture for wide classes of nonsolvable groups A, especially in the fixed point free case GA=1.  相似文献   

2.
Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let cd(G)={c(1)  |  c ? Irr(G)}{{\rm cd}(G)=\{\chi(1)\;|\;\chi\in {\rm Irr}(G)\}} be the set of all irreducible complex character degrees of G forgetting multiplicities, and let X1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be any non-abelian simple exceptional group of Lie type. In this paper, we will show that if S is a non-abelian simple group and cd(S) í cd(H){{\rm cd}(S)\subseteq {\rm cd}(H)} then S must be isomorphic to H. As a consequence, we show that if G is a finite group with X1(G) í X1(H){{\rm X}_1(G)\subseteq {\rm X}_1(H)} then G is isomorphic to H. In particular, this implies that the simple exceptional groups of Lie type are uniquely determined by the structure of their complex group algebras.  相似文献   

3.
Let G be a finite group, p a prime number, B a p-block of the group G, k(B) the number of irreducible complex characters of R belonging to B, k0(B) the number of irreducible characters of height zero in B, and let D be the defect group of B. This article considers the relationship between Brauer's conjecture (k(B) ¦D¦), Olsson's conjecture (k0(B) ¦D/D'¦), and Alperin's conjecture (k0(B) = k0(~B), where ~B is a p-block NG(D) such that ~BG = B). In particular, Olsson's conjecture is proved for p-blocks for those p-solvable groups G for which a Hall p-subgroup of the group NG(D) is either supersolvable or has odd order.Translated from Matematicheskie Zametki, Vol. 52, No. 1, pp. 32–35, July, 1992.  相似文献   

4.
Let G be a nonabelian finite group. Then Irr(G/G′) is an abelian group under the multiplication of characters and acts on the set of non-linear irreducible characters of G via the multiplication of characters. The purpose of this paper is to establish some facts about the action of linear character group on non-linear irreducible characters and determine the structures of groups G for which either all the orbit kernels are trivial or the number of orbits is at most two. Using the established results on this action, it is very easy to classify groups G having at most three nomlinear irreducible characters.  相似文献   

5.
Finite Groups in Which Each Irreducible Character has at Most Two Zeros   总被引:2,自引:0,他引:2  
Let G be a finite group, Irr(G) denotes the set of irreducible complex characters of G and gG the conjugacy class of G containing element g. A well-known theorem of Burnside([1,Theorem 3.15]) states that every nonlinear X ∈ Irr(G) has a zero on G, that is, an element x (or a conjugacy class xG) of G with X(x) = 0. So, if the number of zeros of character table is very small, we may expect, the structure of group is heavily restricted. For example, [2, Proposition 2.7] claimes that G is a Frobenius group with a complement of order 2 if each row in charcter table has at most one zero (its proof uses the classification of simple groups). In this note, we characterize the finite group G satisfying the following hypothesis:  相似文献   

6.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ≅ H×A, where A is an abelian group. In this paper, we verify the conjecture for the twisted Ree groups 2 G 2(q 2) for q 2 = 32m + 1, m ≥ 1. The argument involves verifying five steps outlined by Huppert in his arguments establishing his conjecture for many of the nonabelian simple groups.  相似文献   

7.
Let S be a finite solvable group, and suppose S acts on the finite group N, and they have coprime orders. Then, the celebrated Glauberman correspondence provides a natural bijection from the set IrrS(N) of irreducible characters of N which are invariant under the action of S to the set Irr(CN(S)) of all irreducible characters of the centralizer of S in N. Suppose, further, that the semidirect product SN is a normal subgroup of a finite group G. Let θ∈IrrS(N), and let ψ∈Irr(CN(S)) be its Glauberman correspondent. We prove that there is a bijection with good compatibility properties from the set Irr(G,θ) of the irreducible characters of G above θ to Irr(NG(S),ψ) such that, in the case when S is a p-group for some prime p, it preserves fields of values and Schur indices over Qp, the field of p-adic numbers. Using this result, we also prove a strengthening of the McKay Conjecture for all p-solvable groups.  相似文献   

8.
Let G be a finite group. Denote by Irr(G) the set of all irreducible complex characters of G. Let ${{\rm cd}(G)=\{\chi(1)\;|\;\chi\in {\rm Irr}(G)\}}$ be the set of all irreducible complex character degrees of G forgetting multiplicities, and let X1(G) be the set of all irreducible complex character degrees of G counting multiplicities. Let H be any non-abelian simple exceptional group of Lie type. In this paper, we will show that if S is a non-abelian simple group and ${{\rm cd}(S)\subseteq {\rm cd}(H)}$ then S must be isomorphic to H. As a consequence, we show that if G is a finite group with ${{\rm X}_1(G)\subseteq {\rm X}_1(H)}$ then G is isomorphic to H. In particular, this implies that the simple exceptional groups of Lie type are uniquely determined by the structure of their complex group algebras.  相似文献   

9.
LetG be an arbitrary group with a subgroupA. The subdegrees of (A, G) are the indices [A:AA 9] (wheregεG). Equivalent definitions of that concept are given in [IP] and [K]. IfA is not normal inG and all the subdegrees of (A, G) are finite, we attach to (A, G) the common divisor graph Γ: its vertices are the non-unit subdegrees of (A, G), and two different subdegrees are joined by an edge iff they arenot coprime. It is proved in [IP] that Γ has at most two connected components. Assume that Γ is disconnected. LetD denote the subdegree set of (A, G) and letD 1 be the set of all the subdegrees in the component of Γ containing min(D−{1}). We proved [K, Theorem A] that ifA is stable inG (a property which holds whenA or [G:A] is finite), then the setH={g ε G| [A:AA g ] εD 1 ∪ {1}} is a subgroup ofG. In this case we say thatA<H<G is a disconnected system (briefly: a system). In the current paper we deal with some fundamental types of systems. A systemA<H<G is irreducible if there does not exist 1<N△G such thatAN<H andAN/N<H/N<G/N is a system. Theorem A gives restrictions on the finite nilpotent normal subgroups ofG, whenG possesses an irreducible system. In particular, ifG is finite then Fit(G) is aq-group for a certain primeq. We deal also with general systems. Corollary (4.2) gives information about the structure of a finite groupG which possesses a system. Theorem B says that for any systemA<H<G,N G (N G (A))=N G (A). Theorem C and Corollary C’ generalize a result of Praeger [P, Theorem 2]. The content of this paper corresponds to a part of the author’s Ph.D. thesis carried out at Tel Aviv University under the supervision of Prof. Marcel Herzog.  相似文献   

10.
Primes dividing the degrees of the real characters   总被引:1,自引:0,他引:1  
Let G be a finite group and let Irr(G) denote the set of all complex irreducible characters of G. The Ito–Michler Theorem asserts that if a prime p does not divide the degree of any χ Irr(G) then a Sylow p-subgroup P of G is normal in G. We prove a real-valued version of this theorem, where instead of Irr(G) we only consider the subset Irrrv(G) consisting of all real-valued irreducible characters of G. We also prove that the character degree graph associated to Irrrv(G) has at most 3 connected components. Similar results for the set of real conjugacy classes of G have also been obtained. Part of this paper was done while the second author visited the Mathematics Department of the Università di Firenze. He would like to thank the Department for its hospitality. The authors are also grateful to F. Lübeck for helping them with some computer calculations. The research of the first author was partially supported by MIUR research program “Teoria dei gruppi ed applicazioni”. This research of the second author was partially supported by the Spanish Ministerio de Educación y Ciencia proyecto MTM2004-06067-C02-01. The third author gratefully acknowledges the support of the NSA and the NSF.  相似文献   

11.
Let G be a finite group and cd(G) be the set of all complex irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G???H × A, where A is an abelian group. In this paper, we verify the conjecture for the family of simple exceptional groups of Lie type 3 D 4(q), when q?≥?3.  相似文献   

12.
《代数通讯》2013,41(7):3519-3527
Abstract

Let G and A be finite groups such that (|G|, |A|) = 1. Let K be an algebraically closed field with Char K = 0. Denote by K α G the twisted group algebra of G over K with factor set α. In this paper we prove that if A acts homogeneously on K α G, then there exists an action of A on G, and there is a one-to-one correspondence between the set of A-invariant irreducible K α G-modules and the set of irreducible K α C G (A)-modules.  相似文献   

13.
In 1955 R. Brauer and K. A. Fowler showed that ifG is a group of even order >2, and the order |Z(G)| of the center ofG is odd, then there exists a strongly real) elementx∈G−Z whose centralizer satisfies|C G(x)|>|G|1/3. In Theorem 1 we show that every non-abeliansolvable groupG contains an elementx∈G−Z such that|C G(x)|>[G:G′∩Z]1/2 (and thus|C G(x)|>|G|1/3). We also note that if non-abelianG is either metabelian, nilpotent or (more generally) supersolvable, or anA-group, or any Frobenius group, then|C G(x)|>|G|1/2 for somex∈G−Z. In Theorem 2 we prove that every non-abelian groupG of orderp mqn (p, q primes) contains a proper centralizer of order >|G|1/2. Finally, in Theorem 3 we show that theaverage |C(x)|, x∈G, is ≧c|G| 1/3 for metabelian groups, wherec is constant and the exponent 1/3 is best possible.  相似文献   

14.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ? H × A, where A is an abelian group. We examine arguments to verify this conjecture for the simple groups of Lie type of rank two. To illustrate our arguments, we extend Huppert's results and verify the conjecture for the simple linear and unitary groups of rank two.  相似文献   

15.
Let G denote a finite group and cd (G) the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd (G) = cd (H), then G ≅ H × A, where A is an abelian group. Huppert verified the conjecture for PSp4(q) when q = 3, 4, 5, or 7. In this paper, we extend Huppert’s results and verify the conjecture for PSp4(q) for all q. This demonstrates progress toward the goal of verifying the conjecture for all nonabelian simple groups of Lie type of rank two.  相似文献   

16.
The McKay conjecture asserts that for every finite group G and every prime p, the number of irreducible characters of G having p’-degree is equal to the number of such characters of the normalizer of a Sylow p-subgroup of G. Although this has been confirmed for large numbers of groups, including, for example, all solvable groups and all symmetric groups, no general proof has yet been found. In this paper, we reduce the McKay conjecture to a question about simple groups. We give a list of conditions that we hope all simple groups will satisfy, and we show that the McKay conjecture will hold for a finite group G if every simple group involved in G satisfies these conditions. Also, we establish that our conditions are satisfied for the simple groups PSL2(q) for all prime powers q≥4, and for the Suzuki groups Sz(q) and Ree groups R(q), where q=2 e or q=3 e respectively, and e>1 is odd. Since our conditions are also satisfied by the sporadic simple group J 1, it follows that the McKay conjecture holds (for all primes p) for every finite group having an abelian Sylow 2-subgroup.  相似文献   

17.
For a prime p and a finite group G let Φp(G) denote the complex character associated to the projective indecomposable module in characteristic p with trivial head. Let Irr(Φp(G)) denote the set of irreducible characters occurring as constituents in Φp(G). We characterize all finite simple groups which satisfy Irr(Φp(G))∩Irr(Φq(G))={1G} for all primes pq.  相似文献   

18.
Let cd(G) be the set of irreducible complex character degrees of a finite group G. The Taketa problem conjectures that if G is a finite solvable group, then ${{\rm dl}(G) \leqslant |{\rm cd} (G)|}$ , where dl(G) is the derived length of G. In this note, we show that this inequality holds if either all nonlinear irreducible characters of G have even degrees or all irreducible character degrees are odd. Also, we prove that this inequality holds if all irreducible character degrees have exactly the same prime divisors. Finally, Isaacs and Knutson have conjectured that the Taketa problem might be true in a more general setting. In particular, they conjecture that the inequality ${{\rm dl}(N) \leqslant |{\rm cd} {(G \mid N)}|}$ holds for all normal solvable subgroups N of a group G. We show that this conjecture holds if ${{\rm cd} {(G \mid N')}}$ is a set of non-trivial p–powers for some fixed prime p.  相似文献   

19.
Let G be a finite simple non-Abelian group. t is an involution of G, and L=O2 (CG(t)/O · (CG(t))). K the center Z(L) is cyclic and L/Z(L)-PGL (2, q), q odd, then either a Sylow 2-subgroup of G is semidihedral or CG(t)Z2×PGL (2.5) and G is isomorphic to the Mathieu group M12 of degree 12.  相似文献   

20.
1. Notations and Basic ResultsLet G be a finite nonabelian group. Then frs(G/G') is an abelian group under themultiplication of characters and acts on the set of non-linear irreducible characters of G viathe multiplication of characters. The purpose of this paper is to investigate this action. Asan application of our theoryl in the end of Section 3 we give the classification of groupshaving exactly three non-linear irreducible caracters.All groups in the paper are finite. For a factor grou…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号