首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We consider the following system of discrete equations $$u_i (k) = \sum\limits_{\ell = 0}^N {g_i (k,\ell )fi(\ell ,u_1 (\ell )} ,u_2 (\ell ), \cdots ,u_n (\ell )), k \in \{ 0,1, \cdots ,T\} ,$$ 1≤in whereTN>0, 1≤in. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on {0, 1,…} $$u_i (k) = \sum\limits_{\ell = 0}^\infty {g_i (k,\ell )fi(\ell ,u_1 (\ell )} ,u_2 (\ell ), \cdots ,u_n (\ell )), k \in \{ 0,1, \cdots \} ,1 \leqslant i \leqslant n$$ for which the existence of constant-sign solutions is investigated.  相似文献   

2.
We are concerned with the existence and multiplicity of positive solutions for the system of nonlinear singular Hammerstein integral equations $$u_i(t)=\int_a^bk_i(t,s)g_i(s)f_i(s,u_1(s),\ldots,u_n(s)) {\rm d} s,\quad i=1,2,\ldots,n.$$ We use fixed point index theory to establish our main results based on a priori estimates achieved by utilizing nonnegative matrices. As applications, the main results are applied to establish the existence and multiplicity of positive solutions for an elliptic system in an annulus.  相似文献   

3.
This paper is concerned with the following system $$\Delta ^3u_i(k)+f_i(k,u_1(k),u_2(k),\ldots,u_n(k))=0,\quad{}k\in [0,T],\ i=1,2,\ldots,n,$$ with the Dirichlet boundary condition $$u_i(0)=u_i(1)=u_i(T+3)=0,\quad{}i=1,2,\ldots,n.$$ Some results are obtained for the existence, multiplicity and nonexistence of positive solutions to the above system by using nonlinear alternative of Leray-Schauder type, Krasnosel’skii’s fixed point theorem in a cone and Leggett-Williams fixed point theorem. In particular, it proves that the above system has N positive solutions under suitable conditions, where N is an arbitrary integer.  相似文献   

4.
We consider the following system of integral equations $${u_{i}(t)=\int\nolimits_{I} g_{i}(t, s)f(s, u_{1}(s), u_{2}(s), \cdots, u_{n}(s))ds, \quad t \in I, \ 1 \leq i\leq n}$$ where I is an interval of $\mathbb{R}$ . Our aim is to establish criteria such that the above system has a constant-sign periodic and almost periodic solution (u 1, u 2,…,u n ) when I is an infinite interval of $\mathbb{R}$ , and a constant-sign periodic solution when I is a finite interval of $\mathbb{R}$ . The above problem is also extended to that on $\mathbb{R}$ $$u_{i} {\left( t \right)} = {\int_\mathbb{R} {g_{i} {\left( {t,s} \right)}f_{i} {\left( {s,u_{1} {\left( s \right)},u_{2} {\left( s \right)}, \cdots ,u_{n} {\left( s \right)}} \right)}ds\quad t \in \mathbb{R},\quad 1 \leqslant i \leqslant n.} }$$   相似文献   

5.
The paper describes the general form of an ordinary differential equation of an order n + 1 (n ≥ 1) which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form $f\left( {s,w_{00} \upsilon _0 ,...,\sum\limits_{j = 0}^n {w_{nj\upsilon _j } } } \right) = \sum\limits_{j = 0}^n {w_{n + 1j\upsilon j} + w_{n + 1n + 1} f\left( {x,\upsilon ,\upsilon _1 ,...,\upsilon _n } \right),}$ where $w_{n + 10} = h\left( {s,x,x_1 ,u,u_1 ,...,u_n } \right),w_{n + 11} = g\left( {s,x,x_1 ,...,x_n ,u,u_1 ,...,u_n } \right){\text{ and }}w_{ij} = a_{ij} \left( {x_i ,...,x_{i - j + 1} ,u,u_1 ,...,u_{i - j} } \right)$ for the given functions a ij is solved on $\mathbb{R},u \ne {\text{0}}$ .  相似文献   

6.
Let $\gamma ,\delta \in \mathbb{R}^n $ with $\gamma _j ,\delta _j \in \{ 0,1\} $ . A comparison pair for a system of equations fi(u1,…,un)=0 (i=1,…,n) is a pair of vectors $v,w \in \mathbb{R}^n ,v \leqslant w$ , such that $$\begin{array}{*{20}c} {\gamma _i f_i (u_1 , \ldots ,u_{i - 1} ,v_i ,u_i + 1, \ldots ,u_n ) \leqslant 0,} \\ {\delta _i f_i (u_1 , \ldots ,u_{i - 1} ,w_i ,u_i + 1, \ldots ,u_n ) \geqslant 0} \\ \end{array} $$ for $\gamma _j u_j \geqslant v_j ,\delta _j u_j \leqslant w_j (j = 1, \ldots ,n)$ . The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.  相似文献   

7.
In the paper, we obtain the existence of triple positive solutions for the following second order three-point boundary value problem, $$\left\{\begin{array}{l}(\phi_p(u'))'(t)+q(t)f(u(t),u'(t),(Tu)(t),(Su)(t))=0,\quad 0\leq t\leq1,\\[4pt]u'(0)=\beta u'(\eta),\qquad u(1)=g(u'(1)),\end{array}\right.$$ where $\phi_{p}(s)=|s|^{p-2}s,p>1,\beta\in[0,1),\eta\in(0,\frac{1}{2}]$ , T and S are all linear operators, g(t) is continuous.  相似文献   

8.
We prove a multiplicity result for weakly-coupled systems with p-laplacian operators of the form $$(\phi_{pi}(u_{i}^{\prime}))^{\prime}+gi(u_i)=h_i(t,u,u^\prime),\qquad t\ \in \ (0,1),\qquad$$ Neumann boundary conditions are assumed and the nonlinearity is supposed to be superlinear asymmetric. We use a topological degree method based on a continuation theorem and on the performance of a time-map technique for the unperturbed case.  相似文献   

9.
We study the initial boundary value problem for the nonlinear wave equation: (*) $$\left\{ \begin{gathered} \partial _t^2 u - (\partial _r^2 + \frac{{n - 1}}{r}\partial _r )u = F(\partial _t u,\partial _t^2 u),t \in \mathbb{R}^ + ,R< r< \infty , \hfill \\ u(0,r) = \in _0 u_0 (r),\partial _t u(0,r) = \in _0 u_1 (r),R< r< \infty , \hfill \\ u(t,R) = 0,t \in \mathbb{R}^ + , \hfill \\ \end{gathered} \right.$$ wheren=4,5,u 0,u 1 are real valued functions and ∈0 is a sufficiently small positive constant. In this paper we shall show small solutions to (*) exist globally in time under the condition that the nonlinear termF:?2→? is quadratic with respect to ? t u and ? t 2 u.  相似文献   

10.
In this paper, we deal with the finite difference method for the initial boundary value problem of the nonlinear pseudo-parabolic system $(-1)^Mu_t+A(x,t,u,u_x,\cdots,u_x 2M-1)u_x2M_t=F(x,t,u,u_x,\cdots,u_x 2M)$,$u_xk(o,t)=\psi_{0k}(t), u_xk(L,t)=\psi_{1k}(t),k=0,1,\cdots,M-1,u(x,0)=\phi (x)$ in the rectangular domain $D=[0\leq X\leq L,0\leq t\leq T]$, where $u(x,t)=(u_1(x,t),u_2(x,t),\cdots,u_m(x,t)),\phi (x),\psi_{0k}(t),\psi_{1k}(t),F(x,t,u,u_x,\cdots,u_x 2M)$ are $m$-dimensional vector functions, and $A(x,t,u,u_x,\cdots,u_x2M-1)$ is an $m\times m$ positive definite matrix. The existence and uniqueness of solution for the finite difference system are proved by fixed-point theory. Stability, convergence and error estimates are derived.  相似文献   

11.
We consider the following system of discrete equations
. Criteria for the existence of three constant-sign solutions of the system will be developed. To illustrate the generality of the results obtained, we include applications to several well-known boundary value problems. Parallel results are also established for a system on {0,1,...}
.  相似文献   

12.
In this paper, we consider the following nonlinear Kirchhoff wave equation
$\left\{\begin{array}{l}u_{tt}-\frac{\partial }{\partial x}(\mu (u,\Vert u_{x}\Vert ^{2})u_{x})=f(x,t,u,u_{x},u_{t}),\quad 0
(1)
where \(\widetilde{u}_{0}\), \(\widetilde{u}_{1}\), μ, f, g are given functions and \(\Vert u_{x}\Vert ^{2}=\int_{0}^{1}u_{x}^{2}(x,t)dx.\) To the problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo–Galerkin method and the weak compact method. In particular, motivated by the asymptotic expansion of a weak solution in only one, two or three small parameters in the researches before now, an asymptotic expansion of a weak solution in many small parameters appeared on both sides of (1)1 is studied.
  相似文献   

13.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

14.
In this paper, we discuss the following third order ordinary differential equation $$x^{\prime\prime\prime}(t)=f(t,x(t),x^{\prime}(t),x^{\prime\prime}(t))+e(t),\quad t\in (0,1)$$ with the multi-point boundary conditions $$x^{\prime}(0)=\alpha x^{\prime}(\xi),\qquad x^{\prime\prime}(0)=0,\qquad x(1)=\sum^{m-2}_{j=1}\beta_{j}x(\eta_{j})$$ where β j (1≤jm?2), αR, 0<η 1<η 2<???<η m?2<1, 0<ξ<1. When the β j ’s have no same sign, some existence results are given for the nonlinear problems at resonance case. An example is provided in this paper.  相似文献   

15.
We consider two types of the perturbed elliptic Sine-Gordon type equations on an interval $$\pm u^{\prime \prime}(t)+\lambda \ {\rm sin}\ u(t)=\mu f(u(t)),\ u(t)>0\ t\in I: =(-T,T),\ u(\pm T)=0,$$ where λ, μ > 0 are parameters and T > 0 is a constant. We shall establish asymptotic formulas for variational eigenvalues by using variational methods.  相似文献   

16.
For Ω a bounded subset of R n,n 2,ψ any function in Ω with values in R∪{±∞}andθ∈W1,(q i)(Ω),let K(q i)ψ,θ(Ω)={v∈W1,(q i)(Ω):vψ,a.e.and v-θ∈W1,(q i)0(Ω}.This paper deals with solutions to K(q i)ψ,θ-obstacle problems for the A-harmonic equation-divA(x,u(x),u(x))=-divf(x)as well as the integral functional I(u;Ω)=Ωf(x,u(x),u(x))dx.Local regularity and local boundedness results are obtained under some coercive and controllable growth conditions on the operator A and some growth conditions on the integrand f.  相似文献   

17.
Sufficient conditions are found for the oscillation of proper solutions of the system of differential equations $$\begin{array}{*{20}c} {u'_1 (t) = f_1 (t,u_1 (\tau _1 (t)),...,u_1 (\tau _m (t)),u_2 (\sigma _1 (t)),...,u_2 (\sigma _m (t))),} \\ {u'_2 (t) = f_2 (t,u_1 (\tau _1 (t)),...,u_1 (\tau _m (t)),u_2 (\sigma _1 (t)),...,u_2 (\sigma _m (t))),} \\ \end{array}$$ wheref i: R+×R2m→R (i=1,2) satisfy the local Carathéodory conditions andσ i , τ i :R +R (i=1,...,m) are continuous functions such that $\sigma _i (t) \leqslant t for t \in R_ + ,\mathop {\lim }\limits_{t \to + \infty } \sigma _i (t) = + \infty ,\mathop {\lim }\limits_{t \to + \infty } \tau _i (t) = + \infty (i = 1,...,m)$   相似文献   

18.
We consider the system of Fredholm integral equations
and also the system of Volterra integral equations
where T>0 is fixed and the nonlinearities h i (t,u 1,u 2,…,u n ) can be singular at t=0 and u j =0 where j∈{1,2,…,n}. Criteria are offered for the existence of constant-sign solutions, i.e., θ i u i (t)≥0 for t∈[0,1] and 1≤in, where θ i ∈{1,−1} is fixed. We also include examples to illustrate the usefulness of the results obtained.   相似文献   

19.
20.
Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function $$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$ Here, $$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$ and $ \left| {\left[ {0,\vec x} \right)} \right| $ denotes the Lebesgue measure of the rectangle. We show that necessarily $$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$ In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号