首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

2.
We generalize the second pinching theorem for minimal hypersurfaces in a sphere due to Peng–Terng, Wei–Xu, Zhang, and Ding–Xin to the case of hypersurfaces with small constant mean curvature. Let $M^n$ be a compact hypersurface with constant mean curvature $H$ in $S^{n+1}$ . Denote by $S$ the squared norm of the second fundamental form of $M$ . We prove that there exist two positive constants $\gamma (n)$ and $\delta (n)$ depending only on $n$ such that if $|H|\le \gamma (n)$ and $\beta (n,H)\le S\le \beta (n,H)+\delta (n)$ , then $S\equiv \beta (n,H)$ and $M$ is one of the following cases: (i) $S^{k}\Big (\sqrt{\frac{k}{n}}\Big )\times S^{n-k}\Big (\sqrt{\frac{n-k}{n}}\Big )$ , $\,1\le k\le n-1$ ; (ii) $S^{1}\Big (\frac{1}{\sqrt{1+\mu ^2}}\Big )\times S^{n-1}\Big (\frac{\mu }{\sqrt{1+\mu ^2}}\Big )$ . Here $\beta (n,H)=n+\frac{n^3}{2(n-1)}H^2+\frac{n(n-2)}{2(n-1)} \sqrt{n^2H^4+4(n-1)H^2}$ and $\mu =\frac{n|H|+\sqrt{n^2H^2+ 4(n-1)}}{2}$ .  相似文献   

3.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

4.
In this paper we describe the actions of the operator $S_\mathbb{D }$ or its adjoint $S_\mathbb{D }^*$ on the poly-Bergman spaces of the unit disk $\mathbb{D }.$ Let $k$ and $j$ be positive integers. We prove that $(S_\mathbb{D })^{j}$ is an isometric isomorphism between the true poly-Bergman subspace $\mathcal{A }_{(k)}^2(\mathbb{D })\ominus N_{(k),j}$ onto the true poly-Bergman space $\mathcal{A }_{(j+k)}^2(\mathbb{D }),$ where the linear space $N_{(k),j}$ have finite dimension $j.$ The action of $(S_\mathbb{D })^{j-1}$ on the canonical Hilbert base for the Bergman subspace $\mathcal{A }^2(\mathbb{D })\ominus \mathcal{P }_{j-1},$ gives a Hilbert base $\{ \phi _{ j , k } \}_{ k }$ for $\mathcal{A }_{(j)}^2(\mathbb{D }).$ It is shown that $\{ \phi _{ j , k } \}_{ j, k }$ is a Hilbert base for $L^2(\mathbb{D },d A)$ such that whenever $j$ and $k$ remain constant we obtain a Hilbert base for the true poly-Bergman space $\mathcal{A }_{(j)}^2(\mathbb{D })$ and $\mathcal{A }_{(-k)}^2(\mathbb{D }),$ respectively. The functions $\phi _{ j , k }$ are polynomials in $z$ and $\overline{z}$ and are explicitly given in terms of the $(2,1)$ -hypergeometric polynomials. We prove explicit representations for the true poly-Bergman kernels and the Koshelev representation for the poly-Bergman kernels of $\mathbb{D }.$ The action of $S_\Pi $ on the true poly-Bergman spaces of the upper half-plane $\Pi $ allows one to introduce Hilbert bases for the true poly-Bergman spaces, and to give explicit representations of the true poly-Bergman and poly-Bergman kernels.  相似文献   

5.
The paper presents upper estimates for the non-quadraticity measure of the numbers $\sqrt {2k + 1} \ln ((k + 1 - \sqrt {2k + 1} /k)$ and $\sqrt {2k - 1} arctg(\sqrt {2k - 1} /(k - 1))$ , where k ∈ ?. In particular, the upper estimate for the non-quadraticity measure of ln 2 is improved.  相似文献   

6.
We consider a new approach to estimating the irrationality measure of numbers that are values of the Gauss hypergeometric function. Some of the previous results are improved, in particular, those concerning irrationalities of the form $ \sqrt k $ ln(( $ \sqrt k $ + 1)/( $ \sqrt k $ ? 1)) with k ∈ ?.  相似文献   

7.
We prove that for each universal algebra ${(A, \mathcal{A})}$ of cardinality ${|A| \geq 2}$ and infinite set X of cardinality ${|X| \geq | \mathcal{A}|}$ , the X-th power ${(A^{X}, \mathcal{A}^{X})}$ of the algebra ${(A, \mathcal{A})}$ contains a free subset ${\mathcal{F} \subset A^{X}}$ of cardinality ${|\mathcal{F}| = 2^{|X|}}$ . This generalizes the classical Fichtenholtz–Kantorovitch–Hausdorff result on the existence of an independent family ${\mathcal{I} \subset \mathcal{P}(X)}$ of cardinality ${|\mathcal{I}| = |\mathcal{P}(X)|}$ in the Boolean algebra ${\mathcal{P}(X)}$ of subsets of an infinite set X.  相似文献   

8.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

9.
This paper addresses the question of retrieving the triple ${(\mathcal X,\mathcal P, E)}$ from the algebraic geometry code ${\mathcal C = \mathcal C_L(\mathcal X, \mathcal P, E)}$ , where ${\mathcal X}$ is an algebraic curve over the finite field ${\mathbb F_q, \,\mathcal P}$ is an n-tuple of ${\mathbb F_q}$ -rational points on ${\mathcal X}$ and E is a divisor on ${\mathcal X}$ . If ${\deg(E)\geq 2g+1}$ where g is the genus of ${\mathcal X}$ , then there is an embedding of ${\mathcal X}$ onto ${\mathcal Y}$ in the projective space of the linear series of the divisor E. Moreover, if ${\deg(E)\geq 2g+2}$ , then ${I(\mathcal Y)}$ , the vanishing ideal of ${\mathcal Y}$ , is generated by ${I_2(\mathcal Y)}$ , the homogeneous elements of degree two in ${I(\mathcal Y)}$ . If ${n >2 \deg(E)}$ , then ${I_2(\mathcal Y)=I_2(\mathcal Q)}$ , where ${\mathcal Q}$ is the image of ${\mathcal P}$ under the map from ${\mathcal X}$ to ${\mathcal Y}$ . These three results imply that, if ${2g+2\leq m < \frac{1}{2}n}$ , an AG representation ${(\mathcal Y, \mathcal Q, F)}$ of the code ${\mathcal C}$ can be obtained just using a generator matrix of ${\mathcal C}$ where ${\mathcal Y}$ is a normal curve in ${\mathbb{P}^{m-g}}$ which is the intersection of quadrics. This fact gives us some clues for breaking McEliece cryptosystem based on AG codes provided that we have an efficient procedure for computing and decoding the representation obtained.  相似文献   

10.
We prove that whenever $ \mathcal{A} $ and $ \mathcal{B} $ are dense enough subsets of {1, ..., N}, there exist a $ \mathcal{A} $ and b $ \mathcal{B} $ such that the greatest prime factor of ab + 1 is at least $ N^{1 + |\mathcal{A}|/(9N)} $ .  相似文献   

11.
12.
We prove that if ${\Gamma\curvearrowright (X, \mu)}$ is a free ergodic rigid (in the sense of Popa in Ann Math 163:809–889, 2006) probability measure preserving action of a group Γ with positive first ${\ell^2}$ -Betti number, then the II1 factor ${L^{\infty}(X)\rtimes\Gamma}$ has a unique group measure space Cartan subalgebra, up to unitary conjugacy. We deduce that many ${\mathcal{HT}}$ factors, including the II1 factors associated with the usual actions ${\Gamma\curvearrowright \mathbb{T^2}}$ and ${\Gamma\curvearrowright}$ ${{\rm SL}_2(\mathbb R)/{\rm SL}_2(\mathbb Z)}$ , where Γ is a non-amenable subgroup of ${{\rm SL}_2(\mathbb Z)}$ , have a unique group measure space decomposition.  相似文献   

13.
For an algebra ${\mathcal{A}}$ of complex-valued, continuous functions on a compact Hausdorff space (X, τ), it is standard practice to assume that ${\mathcal{A}}$ separates points in the sense that for each distinct pair ${x, y \in X}$ , there exists an ${f \in \mathcal{A}}$ such that ${f(x) \neq f(y)}$ . If ${\mathcal{A}}$ does not separate points, it is known that there exists an algebra ${\widehat{\mathcal{A}}}$ on a compact Hausdorff space ${(\widehat{X}, \widehat{\tau})}$ that does separate points such that the map ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ is a uniform norm isometric algebra isomorphism. So it is, to a degree, without loss of generality that we assume ${\mathcal{A}}$ separates points. The construction of ${{\widehat{\mathcal{A}}}}$ and ${(\widehat{X}, \widehat{\tau})}$ does not require that ${\mathcal{A}}$ has any algebraic structure nor that ${(X, \tau)}$ has any properties, other than being a topological space. In this work we develop a framework for determining the degree to which separation of points may be assumed without loss of generality for any family ${\mathcal{A}}$ of bounded, complex-valued, continuous functions on any topological space ${(X, \tau)}$ . We also demonstrate that further structures may be preserved by the mapping ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ , such as boundaries of weak peak points, the Lipschitz constant when the functions are Lipschitz on a compact metric space, and the involutive structure of real function algebras on compact Hausdorff spaces.  相似文献   

14.
Let X be a Banach space of dimension > 2. We show that every local Lie derivation of B(X) is a Lie derivation, and that a map of B(X) is a 2-local Lie derivation if and only if it has the form ${A \mapsto AT - TA + \psi(A)}$ A ? A T - T A + ψ ( A ) , where ${T \in B(X)}$ T ∈ B ( X ) and ψ is a homogeneous map from B(X) into ${\mathbb{F}I}$ F I satisfying ${\psi(A + B) = \psi(A)}$ ψ ( A + B ) = ψ ( A ) for ${A, B \in B(X)}$ A , B ∈ B ( X ) with B being a sum of commutators.  相似文献   

15.
Given Banach spaces X and Y, we show that, for each operator-valued analytic map ${\alpha \in \mathcal O (D,\mathcal L(Y,X))}$ satisfying the finiteness condition ${\dim (X/\alpha (z)Y) < \infty}$ pointwise on an open set D in ${\mathbb {C}^n}$ , the induced multiplication operator ${\mathcal O(U,Y) \stackrel{\alpha}{\longrightarrow} \mathcal O (U,X)}$ has closed range on each Stein open set ${U \subset D}$ . As an application we deduce that the generalized range ${{\rm R}^{\infty}(T) = \bigcap_{k \geq 1}\sum_{| \alpha | = k} T^{\alpha}X}$ of a commuting multioperator ${T \in \mathcal L(X)^n}$ with ${\dim(X/\sum_{i=1}^n T_iX) < \infty}$ can be represented as a suitable spectral subspace.  相似文献   

16.
Let X be an ANR (absolute neighborhood retract), ${\Lambda}$ a k-dimensional topological manifold with topological orientation ${\eta}$ , and ${f : D \rightarrow X}$ a locally compact map, where D is an open subset of ${X \times \Lambda}$ . We define Fix(f) as the set of points ${{(x, \lambda) \in D}}$ such that ${x = f(x, \lambda)}$ . For an open pair (U, V) in ${X \times \Lambda}$ such that ${{\rm Fix}(f) \cap U \backslash V}$ is compact we construct a homomorphism ${\Sigma_{(f,U,V)} : H^{k}(U, V ) \rightarrow R}$ in the singular cohomologies H* over a ring-with-unit R, in such a way that the properties of Solvability, Excision and Naturality, Homotopy Invariance, Additivity, Multiplicativity, Normalization, Orientation Invariance, Commutativity, Contraction, Topological Invariance, and Ring Naturality hold. In the case of a ${C^{\infty}}$ -manifold ${\Lambda}$ , these properties uniquely determine ${\Sigma}$ . By passing to the direct limit of ${\Sigma_{(f,U,V)}}$ with respect to the pairs (U, V) such that ${K = {\rm Fix}(f) \cap U \backslash V}$ , we define a homomorphism ${\sigma_{(f,K)} : {H}_{k}({\rm Fix}(f), Fix(f) \backslash K) \rightarrow R}$ in the ?ech cohomologies. Properties of ${\Sigma}$ and ${\sigma}$ are equivalent each to the other. We indicate how the homomorphisms generalize the fixed point index.  相似文献   

17.
In this paper we prove that for $p > 13649$ equations of the form $x^{13} + y^{13} = Cz^{p}$ have no non-trivial primitive solutions $(a,b,c)$ such that $13 \not \mid c$ for an infinite family of values for $C$ . Our method consists on relating a solution $(a,b,c)$ to the previous equation to a solution $(a,b,c_1)$ of another Diophantine equation with coefficients in $\mathbb Q (\sqrt{13})$ . Then we attach to $(a,b,c_1)$ a Frey curve $E_{(a,b)}$ defined over $\mathbb Q (\sqrt{13})$ that is not a $\mathbb Q $ -curve. We prove a modularity result of independent interest for certain elliptic curves over totally real abelian number fields satisfying some local conditions at $3$ . This theorem, in particular, implies modularity of $E_{(a,b)}$ . This enables us to use level lowering results and apply the modular approach via Hilbert cuspforms over $\mathbb Q (\sqrt{13})$ to prove the non-existence of $(a,b,c_1)$ and, consequently, of $(a,b,c)$ .  相似文献   

18.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

19.
We consider semi-infinite programming problems ${{\rm SIP}(z)}$ depending on a finite dimensional parameter ${z \in \mathbb{R}^p}$ . Provided that ${\bar{x}}$ is a strongly stable stationary point of ${{\rm SIP}(\bar{z})}$ , there exists a locally unique and continuous stationary point mapping ${z \mapsto x(z)}$ . This defines the local critical value function ${\varphi(z) := f(x(z); z)}$ , where ${x \mapsto f(x; z)}$ denotes the objective function of ${{\rm SIP}(z)}$ for a given parameter vector ${z\in \mathbb{R}^p}$ . We show that ${\varphi}$ is the sum of a convex function and a smooth function. In particular, this excludes the appearance of negative kinks in the graph of ${\varphi}$ .  相似文献   

20.
In [17] the third author presented Moebius geometry for sub-manifolds in Sn and calculated the first variational formula of the Willmore functional by using Moebius invariants. In this paper we present the second variational formula for Willmore submanifolds. As an application of these variational formulas we give the standard examples of Willmore hypersurfaces $ \lbrace W_{k}^{m}:= S^{k}(\sqrt {(m-k)/m}) \times S^{m-k}(\sqrt {k/m}), 1 \leq k \leq m-1 \rbrace $ in Sm+1 (which can be obtained by exchanging radii in the Clifford tori $ S^{k}(\sqrt {k/m}) \times S^{m-k}(\sqrt {(m-k)/m)})$ and show that they are stable Willmore hypersurfaces. In case of surfaces in S3, the stability of the Clifford torus $ S^{1}{({1\over \sqrt {2}})}\times S^{1}{({1\over \sqrt {2}})} $ was proved by J. L. Weiner in [18]. We give also some examples of m-dimensional Willmore submanifolds in an n-dimensional unit sphere Sn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号